J Glob Optim (2013) 56:1247-1293
DOI 10.1007/s10898-012-9951-y

Derivative-free optimization: a review of algorithms
and comparison of software implementations

Luis Miguel Rios - Nikolaos V. Sahinidis

Received: 20 December 2011 / Accepted: 23 June 2012 / Published online: 12 July 2012
© Springer Science+Business Media, LLC. 2012

Abstract  This paper addresses the solution of bound-constrained optimization problems
using algorithms that require only the availability of objective function values but no deriv-
ative information. We refer to these algorithms as derivative-free algorithms. Fueled by a
growing number of applications in science and engineering, the development of derivative-
free optimization algorithms has long been studied, and it has found renewed interest in
recent time. Along with many derivative-free algorithms, many software implementations
have also appeared. The paper presents a review of derivative-free algorithms, followed by
a systematic comparison of 22 related implementations using a test set of 502 problems.
The test bed includes convex and nonconvex problems, smooth as well as nonsmooth prob-
lems. The algorithms were tested under the same conditions and ranked under several crite-
ria, including their ability to find near-global solutions for nonconvex problems, improve a
given starting point, and refine a near-optimal solution. A total of 112,448 problem instances
were solved. We find that the ability of all these solvers to obtain good solutions dimin-
ishes with increasing problem size. For the problems used in this study, TOMLAB/MULTI -
MIN, TOMLAB/GLCCLUSTER, MCS and TOMLAB/LGO are better, on average, than other
derivative-free solvers in terms of solution quality within 2,500 function evaluations. These
global solvers outperform local solvers even for convex problems. Finally, TOMLAB/OQNLP,
NEWUOA, and TOMLAB/MULTIMIN show superior performance in terms of refining a near-
optimal solution.

Keywords Derivative-free algorithms - Direct search methods - Surrogate models

Electronic supplementary material The online version of this article (doi:10.1007/s10898-012-9951-y)
contains supplementary material, which is available to authorized users.

L. M. Rios - N. V. Sahinidis (<))

Department of Chemical Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: sahinidis@cmu.edu

L. M. Rios
e-mail: Imrios @gmail.com

@ Springer


http://dx.doi.org/10.1007/s10898-012-9951-y

1248 J Glob Optim (2013) 56:1247-1293

1 Introduction

The problem addressed in this paper is the optimization of a deterministic function f :
R" — R over a domain of interest that possibly includes lower and upper bounds on the
problem variables. We assume that the derivatives of f are neither symbolically nor numeri-
cally available, and that bounds, such as Lipschitz constants, for the derivatives of f are also
unavailable.

The problem is of interest when derivative information is unavailable, unreliable, or
impractical to obtain, for instance when f is expensive to evaluate or somewhat noisy,
which renders most methods based on finite differences of little or no use [79,140]. We refer
to this problem as derivative-free optimization. We further refer to any algorithm applied to
this problem as a derivative-free algorithm, even if the algorithm involves the computation
of derivatives for functions other than f.

Derivative-free optimization is an area of long history and current rapid growth, fueled by
a growing number of applications that range from science problems [4,42,52,143] to medical
problems [90, 103] to engineering design and facility location problems [2,10,15,48,49,54,
57,91,92,98].

The development of derivative-free algorithms dates back to the works of Spendley et al.
[132] and Nelder and Mead [99] with their simplex-based algorithms. Recent works on the
subject have led to significant progress by providing convergence proofs [5,9,31,34,76,80,
85,88,134], incorporating the use of surrogate models [22,24,127,131], and offering the
first textbook that is exclusively devoted to this topic [35]. Concurrent with the develop-
ment of algorithms, software implementations for this class of optimization problems have
resulted in a wealth of software packages, including BOBYQA [115], CMA-ES [55], four
COLINY solvers [124], DFO [125], glcCluster [60, pp. 109-111], HOPSPACK [108],
IMFIL [74], LGO [105], MCS [101], multiMin [60, pp. 148-151], NEWUOA [114],
NOMAD [6], OONLP [62], PSWARM [137,138], SID-PSM [40,41], and SNOBFIT [66].

Mongeau et al. [96] performed a comparison of derivative-free solvers in 1998 by con-
sidering six solvers over a set of eleven test problems. Since the time of that comparison, the
number of available derivative-free optimization solvers has more than quadrupled. Other
comparisons, such as [11,33,38,48,53,65,67,97,138], are restricted to a few solvers related
to the algorithms proposed in these papers. In addition, these comparisons consider small
sets of test problems. There is currently no systematic comparison of the existing implemen-
tations of derivative-free optimization algorithms on a large collection of test problems. The
primary purpose of the present paper is to provide such a comparison, aiming at addressing
the following questions:

— What is the quality of solutions obtained by current solvers for a given limit on the num-
ber of allowable function evaluations? Does quality drop significantly as problem size
increases?

— Which solver is more likely to obtain global or near-global solutions for nonconvex
problems?

— Isthere a subset of existing solvers that would suffice to solve a large fraction of problems
when all solvers are independently applied to all problems of interest? Conversely, are
there problems that can be solved by only one or a few solvers?

— Given a starting near-optimal solution, which solver reaches the solution fastest?

Before addressing these questions computationally, the paper begins by presenting a
review of the underlying theory and motivational ideas of the algorithms. We classify algo-
rithms developed for this problem as direct and model-based. Direct algorithms determine

@ Springer



J Glob Optim (2013) 56:1247-1293 1249

search directions by computing values of the function f directly, whereas model-based algo-
rithms construct and utilize a surrogate model of f to guide the search process. We further
classify algorithms as local or global, with the latter having the ability to refine the search
domain arbitrarily. Finally, we classify algorithms as stochastic or deterministic, depending
upon whether they require random search steps or not.

Readers familiar with the subject matter of this paper may have noticed that there exists
literature that reserves the term derivative-free algorithms only for what we refer to as model-
based algorithms in the current paper. In addition, what we refer to as derivative-free opti-
mization is often also referred to as optimization over black boxes. The literature on these
terms is often inconsistent and confusing (cf. [79] and discussion therein).

Local search algorithms are reviewed in Sect. 2. The presentation includes direct and
model-based strategies. Global search algorithms are discussed in Sect. 3, including deter-
ministic as well as stochastic approaches. Section 4 provides a brief historical overview and
overall assessment of the algorithmic state-of-the-art in this area. Leading software imple-
mentations of derivative-free algorithms are discussed in Sect. 5. The discussion includes
software characteristics, requirements, and types of problems handled. Extensive computa-
tional experience with these codes is presented in Sects. 6 and 7. A total of 502 test problems
were used, including 78 smooth convex, 161 nonsmooth convex, 245 smooth nonconvex,
and 18 nonsmooth nonconvex problems. These problems were used to test 22 solvers using
the same starting points and bounding boxes. During the course of the computational work
for this paper, we made test problems and results available to the software developers and
asked them to provide us with a set of options of their choice. Many of them responded and
even decided to change the default settings in their software thereafter. In an effort to encour-
age developers to revise and improve their software, we shared our computational results
with them over several rounds. Between each round, several developers provided improved
versions of their implementations. At the end of this process, we tested their software against
an additional collection of problems that had not been seen by developers in order to confirm
that the process had not led to overtraining of the software on our test problem collection.
Conclusions from this entire study are drawn in Sect. 8.

2 Local search methods
2.1 Direct local search methods

Hooke and Jeeves [64] describe direct search as the sequential examination of trial solu-
tions generated by a certain strategy. Classical direct search methods did not come with
proofs of termination or convergence to stationary points. However, recent papers start-
ing with [134,135] have proved convergence to stationary points, among other properties.
These old methods remain popular due to their simplicity, flexibility, and reliability. We next
describe specific direct search methods that are local in nature.

2.1.1 Nelder—Mead simplex algorithm

The Nelder—Mead algorithm introduced in [99] starts with a set of points that form a simplex.
In each iteration, the objective function values at the corner points of the simplex determine
the worst corner point. The algorithm attempts to replace the worst point by introducing a
new vertex in a way that results in a new simplex. Candidate replacement points are obtained
by transforming the worst vertex through a number of operations about the centroid of the

@ Springer



1250 J Glob Optim (2013) 56:1247-1293

current simplex: reflection, expansion, inside and outside contractions. McKinnon [94] has
established analytically that convergence of the Nelder—-Mead algorithm can occur to a point
where the gradient of the objective function is nonzero, even when the function is convex and
twice continuously differentiable. To prevent stagnation, Kelley [75] proposed to enforce a
sufficient decrease condition determined by an approximation of the gradient. If stagnation
is observed, the algorithm restarts from a different simplex. Tseng [136] proposed a glob-
ally convergent simplex-based search method that considers an expanded set of candidate
replacement points. Other modifications of the Nelder—Mead algorithm are presented in [35].

2.1.2 Generalized pattern search (GPS) and generating set search (GSS) methods

Torczon [135] introduced generalized pattern search methods (GPS) for unconstrained opti-
mization. GPS generalizes direct search methods including the Hooke and Jeeves [64] algo-
rithm. At the beginning of a new iteration, GPS searches by exploratory moves. The current
iterate defines a set of points that form a pattern, determined by a step and a generating
matrix that spans R".

Further generalizing GPS, Kolda et al. [79] coined the term GSS in order to describe, unify,
and analyze direct search methods, including algorithms that apply to constrained problems.
Each iteration k of GSS methods consists of two basic steps. The search step is performed
first over a finite set of search directions Hy generated by some, possibly heuristic, strategy
that aims to improve the current iterate but may not guarantee convergence. If the search step
fails to produce a better point, GSS methods continue with the poll step, which is associated
with a generating set Gy that spans positively R”. Generating sets are usually positive bases,
with a cardinality between n + 1 to 2n. Assuming f is smooth, a generating set contains at
least one descent direction of f at a non-stationary point in the domain of definition of f.

Given G = {d(l), ..., dPY} with p>n+1and d® e R", the function f is evaluated
at a set of trial points Py = {x; + Ard : d € G}, where A is the step length. An iteration
is successful if there exists y € Py such that f(y) < f(xx) — p(Ak), where p is a forcing
function. The opportunistic poll strategy proceeds to the next iteration upon finding a point y,
while the complete poll strategy evaluates all points in P, and assigns y = arg min,ep, f(x).
Successful iterations update the iterate x;41 to y and possibly increase the step length Ay
to ¢ Ak, with ¢ > 1. Unsuccessful iterations maintain the same iterate, i.e., xx+1 = Xk, and
reduce the step length Ay to O Ag, with 0 < 6 < 1. The forcing function p is included in
order to impose a sufficient decrease condition and is required to be a continuous decreasing
function with lim;—¢ p(¢)/t = 0. Alternatively, the set P, can be generated using integer
lattices [135]. In the latter case, the iteration is successful if a point y satisfies simple decrease,
Le, f() < [

Lewis and Torczon [83] extended pattern search methods to problems with bound con-
straints by including axis directions in the set of poll directions. Lewis and Torczon [84]
further extended pattern search methods to linearly constrained problems by forcing the gen-
erating set to span a tangent cone 7q (xx, €), which restricts the tangent vectors to satisfy all
constraints within an e-neighborhood from x;.

Under mild conditions, [135] showed convergence of GSS methods to stationary points,
which, could be local minima, local maxima, or even saddle points.

Mesh adaptive direct search (MADS) methods The MADS methods (Audet and Dennis [11])
modified the poll step of GPS algorithms to consider a variable set of poll directions whose
union across all iterations is asymptotically dense in R”. MADS generates the poll points
using two parameters: a poll size parameter, which restricts the region from which points can

@ Springer



J Glob Optim (2013) 56:1247-1293 1251

be selected, and a mesh size parameter, which defines a grid inside the region limited by the
poll size parameter. MADS incorporates dynamic ordering, giving precedence to previously
successful poll directions. Audet and Dennis [11] first proposed random generation of poll
directions for each iteration, and Audet et al. [8] proposed a deterministic way for generating
orthogonal directions.

Abramson and Audet [5] showed convergence of the MADS method to second-order
stationary points under the assumption that f is continuously differentiable with Lipschitz
derivatives near the limit point. Under additional assumptions ( f twice strictly differentiable
near the limit point), MADS was shown to converge to a local minimizer with probability 1.
A number of problems for which GPS stagnates and MADS converges to an optimal solution
are presented in [11]. Some examples were presented in [5] that show how GPS methods
stall at saddle points, while MADS escapes and converges to a local minimum.

MADS handles general constraints by the extreme barrier approach [11], which rejects
infeasible trial points from consideration, or by the progressive barrier approach [12], which
allows infeasible trial points within a decreasing infeasibility threshold.

Pattern search methods using simplex gradients Custédio and Vicente [40] proposed to
enhance the poll step by giving preference to directions that are closest to the negative of
the simplex gradient. Simplex gradients are an approximation to the real gradient and are
calculated out of a simplex defined by previously evaluated points.

2.2 Local model-based search algorithms

The availability of a high-fidelity surrogate model permits one to exploit its underlying prop-
erties to guide the search in a intelligent way. Properties such as the gradient and higher order
derivative information, as well as the probability distribution function of the surrogate model
are used. Since a high-fidelity surrogate model is typically unavailable for a given problem,
these methods start by sampling the search space and building an initial surrogate model.
The methods then proceed iteratively to optimize the surrogate model, evaluate the solution
point, and update the surrogate model.

2.2.1 Trust-region methods

Trust-region methods use a surrogate model that is usually smooth, easy to evaluate, and
presumed to be accurate in a neighborhood (trust region) about the current iterate. Powell
[109] proposed to use a linear model of the objective within a trust-region method. The algo-
rithm considered a monotonically decreasing radius parameter and included iterations that
maintained geometric conditions of the interpolation points. Linear models are practical since
they only require O(n) interpolation points, albeit at the cost of not capturing the curvature
of the underlying function. Powell [112] and Conn et al. [31,32] proposed to use a quadratic
model of the form:

qr(xx +5) = f ) + (gk, s) + %(s, Hys)
where, at iteration k, xi is the current iterate, gy € R”, and Hy is a symmetric matrix of
dimension n. Rather than using derivative information, g and Hj are estimated by requiring
gx to interpolate a set Y of sample points: gx(x®) = f(x®) fori = 1,..., p. Unless
conditions are imposed on the elements of g; and Hg, at least (n + 1)(n + 2)/2 points are
needed to determine gx and Hj uniquely. Let x* denote a minimizer of g, within the trust

@ Springer



1252 J Glob Optim (2013) 56:1247-1293

region and define the ratio pr = (f (xx) — f(x™)) / (g (xx) — qx (x™)). If pi is greater than a
user-defined threshold, x* replaces a point in ¥ and the trust region is increased. Otherwise,
if the geometry of the set Y is adequate, the trust-region radius is reduced, while, if the geom-
etry is not adequate, a point in the set is replaced by another that improves the poisedness of
the set. The algorithm terminates when the trust-region radius drops below a given tolerance.

Powell [113] proposed an algorithm that uses a quadratic model relying on fewer than
(n+1)(n+2)/2 interpolation points. The remaining degrees of freedom in the interpolation
are determined by minimizing the change to the Hessian of the surrogate model between two
consecutive iterations.

2.2.2 Implicit filtering

In addition to, or instead of developing a surrogate of f, one may develop a surrogate of the
gradient of f and use it to expedite the search. Implicit filtering [50, 142] uses an approx-
imation of the gradient to guide the search, resembling the steepest descent method when
the gradient is known. The approximation of the gradient at an iterate is based on forward
or centered differences, and the difference increment varies as the optimization progresses.
Forward differences require n function evaluations, whereas centered difference gradients
require 2n function evaluations over the set {x == se¢; : i = 1, ..., n}, where x is the current
iterate, s is the scale of the stencil, and e¢; are coordinate unit vectors. As these points are
distributed around the iterate, they produce approximations less sensitive to noise than for-
ward differences [50]. A line search is then performed along the direction of the approximate
gradient. The candidate point is required to satisfy a minimum decrease condition of the form
fx—=8Vif(x)) — fx) < —a6||st(x)||2, where § is the step and « is a parameter. The
algorithm continues until no point satisfies the minimum decrease condition, at which point
the scale s is decreased. The implicit filtering algorithm terminates when the approximate
gradient is less than a certain tolerance proportional to s.

3 Global search algorithms
3.1 Deterministic global search algorithms
3.1.1 Lipschitzian-based partitioning techniques

Lipschitzian-based methods construct and optimize a function that underestimates the orig-
inal one. By constructing this underestimator in a piecewise fashion, these methods provide
possibilities for global, as opposed to only local, optimization of the original problem. Let
L > 0 denote a Lipschitz constant of f. Then |f(a) — f(b)| < L || a—>b | foralla, b
in the domain of f. Assuming L is known, Shubert [129] proposed an algorithm for bound-
constrained problems. This algorithm evaluates the extreme points of the search space and
constructs linear underestimators by means of the Lipschitz constant. The algorithm then
proceeds to evaluate the minimum point of the underestimator and construct a piecewise
underestimator by partitioning the search space.

A straightforward implementation of Shubert’s algorithm for derivative-free optimiza-
tion problems has two major drawbacks: the Lipschitz constant is unknown and the num-
ber of function evaluations increases exponentially, as the number of extreme points of an
n-dimensional hypercube is 2". The DIRECT algorithm and branch-and-bound search are
two possible approaches to address these challenges.

@ Springer



J Glob Optim (2013) 56:1247-1293 1253

The DIRECT algorithm Jones et al. [72] proposed the DIRECT algorithm (DIvide a hyper-
RECTangle), with two main ideas to extend Shubert’s algorithm to derivative-free optimiza-
tion problems. First, function values are computed only at the center of an interval, instead
of all extreme points. By subdividing intervals into thirds, one of the resulting partition ele-
ments inherits the center of the initial interval, where the objective function value is already
known. The second main idea of the DIRECT algorithm is to select from among current
hyperrectangles one that (a) has the lowest objective function value for intervals of similar
size and (b) is associate with a large potential rate of decrease of the objective function value.
The amount of potential decrease in the current objective function value represents a setable
parameter in this algorithm and can be used to balance local and global search; larger values
ensure that the algorithm is not local in its orientation.

In the absence of a Lipschitz constant, the DIRECT algorithm terminates once the number
of iterations reaches a predetermined limit. Under mild conditions, Finkel and Kelley [47]
proved that the sequence of best points generated by the algorithm converges to a KKT
point. Convergence was also established for general constrained problems, using a barrier
approach.

Branch-and-bound (BB) search BB sequentially partitions the search space, and determines
lower and upper bounds for the optimum. Partition elements that are inferior are eliminated
in the course of the search. Let £2 = [x;, x,/] be the region of interest and let x{, € £2 be a
global minimizer of f in £2. The availability of a Lipschitz constant L along with a set of
sample points A = {x,i = 1,..., p} C £2 provides lower and upper bounds:

max {f(7) — L&) = [, = f() = fo =

i=l1,..., =

.....

where §; is a function of the distance of x) from the vertices of [x7, x,]. The Lipschitz
constant L is unknown but a lower bound L can be estimated from the sampled objective
function values:

|f D) = FD)

L = max - - <L, Lj=1,...,p, i .
L=max == o o = J p, iF]

Due to the difficulty of obtaining deterministic upper bounds for L, statistical bounds rely-
ing on extreme order statistics were proposed in [106]. This approach assumes samples are
generated randomly from €2 and their corresponding objective function values are random
variables. Subset-specific estimates of L can be significantly smaller than the global L, thus
providing sharper lower bounds for the objective function as BB iterations proceed.

3.1.2 Multilevel coordinate search (MCS)

Like the DIRECT algorithm, MCS [65] partitions the search space into boxes with an eval-
uated base point. Unlike the DIRECT algorithm, MCS allows base points anywhere in the
corresponding boxes. Boxes are divided with respect to a single coordinate. The global-local
search that is conducted is balanced by a multilevel approach, according to which each box
is assigned a level s that is an increasing function of the number of times the box has been
processed. Boxes with level s = spyax are considered too small to be further split.

At each iteration, MCS selects boxes with the lowest objective value for each level value
and marks them as candidates for splitting. Let n; be the number of splits in coordinate j
during the course of the algorithm. If s > 2n(minn; + 1), open boxes are considered for
splitting by rank, which prevents having unexplored coordinates for boxes with high s values;

@ Springer



1254 J Glob Optim (2013) 56:1247-1293

in this case, the splitting index k is chosen such that 7y = min n ;. Otherwise, open boxes are
considered for splitting by expected gain, which selects the splitting index and coordinate
value by optimizing a local separable quadratic model using previously evaluated points.
MCS with local search performs local searches from boxes with level spax, provided that the
corresponding base points are not near previously investigated points. As smax approaches
infinity, the base points of MCS form a dense subset of the search space and MCS converges
to a global minimum [65].

3.2 Global model-based search algorithms

Similarly to local model-based algorithms described in Sect. 2.2, global model-based
approaches optimize a high-fidelity surrogate model, which is evaluated and updated to
guide the optimization of the real model. In this context, the surrogate model is developed
for the entire search space or subsets that are dynamically refined through partitioning.

3.2.1 Response surface methods (RSMs)

These methods approximate an unknown function f by a response surface (or metamodel)
f [16]. Any mismatch between f and f is assumed to be caused by model error and not
because of noise in experimental measurements.

Response surfaces may be non-interpolating or interpolating [70]. The former are obtained
by minimizing the sum of square deviations between f and f at a number of points, where
measurements of f have been obtained. The latter produce functions that pass through the
sampled responses. A common choice for non-interpolating surfaces are low-order polyno-
mials, the parameters of which are estimated by least squares regression on experimental
designs. Interpolating methods include kriging and radial basis functions. Independent of
the functions used, the quality of the predictor depends on selecting an appropriate sampling
technique [14].

The interpolating predictor at point x is of the form:

m p
for =i+ i (x =),
i=1 i=1

where f; are polynomial functions, «; and S; are unknown coefficients to be estimated, ¢
is a basis function, and x) e R",i =1, ..., p, are sample points. Basis functions include
linear, cubic, thin plate splines, multiquadratic, and kriging. These are discussed below in
more detail.

Kriging Originally used for mining exploration models, kriging [93] models a deterministic
response as the realization of a stochastic process by means of a kriging basis function. The
interpolating model that uses a kriging basis function is often referred to as a Design and
Analysis of Computer Experiments (DACE) stochastic model [122]:

P n
A Ph
f(x)zu-i-gbiexp[—E@h }
im1 h=1

0, >0, phel0,2l,h=1,...,n.

Xp — x;(li)

Assuming f is a random variable with known realizations f @Dy, i =1,...,p, the
parameters w, b;, 6, and pj, are estimated by maximizing the likelihood of the observed

@ Springer



J Glob Optim (2013) 56:1247-1293 1255

realizations. The parameters are dependent on sample point information but independent of
the candidate point x. Nearby points are assumed to have highly correlated function values,
thus generating a continuous interpolating model. The weights 6, and pj, account for the
importance and the smoothness of the corresponding variables. The predictor f (x) is then
minimized over the entire domain.

Efficient global optimization (EGO) The EGO algorithm [73,126] starts by performing
a space-filling experimental design. Maximum likelihood estimators for the DACE model
are calculated and the model is then tested for consistency and accuracy. A branch-and-
bound algorithm is used to optimize the expected improvement, E[/ (x)], at the point x. This

expected improvement is defined as: E[/(x)] = E [max( Sfmin — f (x), 0)] , where fiip is the

best objective value known and f is assumed to follow a normal distribution with mean and
standard deviation equal to the DACE predicted values. Although the expected improvement
function can be reduced to a closed-form expression [73], it can be highly multimodal.

Radial basis functions  Radial basis functions approximate f by considering an interpo-
lating model based on radial functions. Powell [111] introduced radial basis functions to
derivative-free optimization.

Given a set of sample points, Gutmann [53] proposed to find a new point x such that
the updated interpolant predictor f satisfies f (x) = T for a target value 7. Assuming that
smooth functions are more likely than “bumpy” functions, x is chosen to minimize a measure
of “bumpiness” of f. This approach is similar to maximizing the probability of improvement

[70], where x is chosen to maximize the probability: Prob = @ [(T - f (x))/s (1)] , where

@ is the normal cumulative distribution function and s (x) is the standard deviation predictor.
Various strategies that rely on radial basis functions have been proposed and analyzed
[63,103,118], as well as extended to constrained optimization [117]. The term “RBF meth-
ods” will be used in later sections to refer to global optimization algorithms that minimize
the radial-basis-functions-based interpolant directly or minimize a measure of bumpiness.

Sequential design for optimization (SDO)  Assuming that f (x) is a random variable with
standard deviation predictor s(x), the Sl?O algorithm [36] proposes the minimization of the
statistical lower bound of the function f(x*) — ts(x*) for some T > 0.

3.2.2 Surrogate management framework (SMF)

Booker et al. [23] proposed a pattern search method that utilizes a surrogate model. SMF
involves a search step that uses points generated by the surrogate model in order to pro-
duce potentially optimal points as well as improve the accuracy of the surrogate model. The
search step alternates between evaluating candidate solution points and calibrating the sur-
rogate model until no further improvement occurs, at which point the algorithm switches to
the poll step.

3.2.3 Optimization by branch-and-fit
Huyer and Neumaier [66] proposed an algorithm that combines surrogate models and ran-
domization. Quadratic models are fitted around the incumbent, whereas linear models are

fitted around all other evaluated points. Candidate points for evaluation are obtained by opti-
mizing these models. Random points are generated when the number of points at hand is

@ Springer



1256 J Glob Optim (2013) 56:1247-1293

insufficient to fit the models. Additional points from unexplored areas are selected for evalu-
ation. The user provides a resolution vector that confines the search to its multiples, thereby
defining a grid of candidate points. Smaller resolution vectors result in grids with more points.

3.3 Stochastic global search algorithms

This section presents approaches that rely on critical non-deterministic algorithmic steps.
Some of these algorithms occasionally allow intermediate moves to lesser quality points
than the solution currently at hand. The literature on stochastic algorithms is very exten-
sive, especially on the applications side, since their implementation is rather straightforward
compared to deterministic algorithms.

3.3.1 Hit-and-run algorithms

Proposed independently by Boneh and Golan [21] and Smith [130], each iteration of hit-
and-run algorithms compares the current iterate x with a randomly generated candidate. The
current iterate is updated only if the candidate is an improving point. The generation of
candidates is based on two random components. A direction d is generated using a uniform
distribution over the unit sphere. For the given d, a step s is generated from a uniform distri-
bution over the set of steps S in a way that x + ds is feasible. Bélisle et al. [17] generalized
hit-and-run algorithms by allowing arbitrary distributions to generate both the direction d and
step s, and proved convergence to a global optimum under mild conditions for continuous
optimization problems.

3.3.2 Simulated annealing

At iteration k, simulated annealing generates a new trial point X that is compared to the
incumbent x* and accepted with a probability function [95]:

if f(X) = f(x).

As a result, unlike hit-and-run algorithms, simulated annealing allows moves to points
with objective function values worse than the incumbent. The probability P depends on the
“temperature” parameter Tj; the sequence {7}} is referred to as the cooling schedule. Cool-
ing schedules are decreasing sequences that converge to 0 sufficiently slow to permit the
algorithm to escape from local optima.

Initially proposed to handle combinatorial optimization problems [78], the algorithm was
later extended to continuous problems [17]. Asymptotic convergence results to a global opti-
mum have been presented [1] but there is no guarantee that a good solution will be obtained in
a finite number of iterations [121]. Interesting finite-time performance aspects are discussed
in [27,104].

_fO=f@] i pex
P<£|xk>=ljxp[ T ] if £() > f(x)

3.3.3 Genetic algorithms

Genetic algorithms, often referred to as evolutionary algorithms, were introduced by Hol-
land [58] and resemble natural selection and reproduction processes governed by rules that
assure the survival of the fittest in large populations. Individuals (points) are associated with
identity genes that define a fitness measure (objective function value). A set of individuals

@ Springer



J Glob Optim (2013) 56:1247-1293 1257

form a population, which adapts and mutates following probabilistic rules that utilize the
fitness function. Bethke [18] extended genetic algorithms to continuous problems by rep-
resenting continuous variables by an approximate binary decomposition. Liepins and Hil-
liard [86] suggested that population sizes should be between 50 and 100 to prevent failures
due to bias by the highest fitness individuals. Recent developments in this class of algorithms
introduce new techniques to update the covariance matrix of the distribution used to sam-
ple new points. Hansen [56] proposed a covariance matrix adaptation method which adapts
the resulting search distribution to the contours of the objective function by updating the
covariance matrix deterministically using information from evaluated points. The resulting
distribution draws new sample points with higher probability in expected promising areas.

3.3.4 Particle swarm algorithms

Particle swarm optimization is a population-based algorithm introduced by Kennedy and
Eberhart [44,77] that maintains at each iteration a swarm of particles (set of points) with a
velocity vector associated with each particle. A new set of particles is produced from the
previous swarm using rules that take into account particle swarm parameters (inertia, cogni-
tion, and social) and randomly generated weights. Particle swarm optimization has enjoyed
recent interest resulting in hybrid algorithms that combine the global scope of the particle
swarm search with the faster local convergence of the Nelder—Mead simplex algorithm [46]
or GSS methods [138].

4 Historical overview and some algorithmic insights

A timeline in the history of innovation in the context of derivative-free algorithms is provided
in Fig. 1, while Table 1 lists works that have received over 1,000 citations each. As seen in
Fig. 1, early works appeared sparingly between 1960 and 1990. The Hooke—Jeeves and Nel-
der—Mead algorithms were the dominant approaches in the 1960s and 1970s, and continue
to be popular. Stochastic algorithms were introduced in the 1970s and 1980s and have been
the most cited. There was relatively little theory behind the deterministic algorithms until the
1990s. Over the last two decades, the emphasis in derivative-free optimization has shifted
towards the theoretical understanding of existing algorithms as well as the development of
approaches based on surrogate models. The understanding that management of the geometry
of surrogate models has a considerable impact on the performance of the underlying algo-
rithms led to the development of several new competing techniques. As seen in Fig. 1, these
developments have led to a renewed interest in derivative-free optimization.

4.1 Algorithmic insights

The above classification of algorithms to direct and model based, as well as deterministic and
stochastic was based on each algorithm’s predominant characteristics. Many of the software
implementations of these algorithms rely on hybrids that involve characteristics from more
than one of the major algorithmic categories. Yet, in all cases, every iteration of a deriva-
tive-free method can be viewed as a process the main purpose of which is to determine the
next point(s) to evaluate. Information used to make this determination is obtained from a
subset of the set of previously evaluated points, ranging from an empty subset to a single
previously evaluated point to all previously evaluated points. Different priorities are assigned
to potential next points and the selection of the next point(s) to evaluate largely depends on

@ Springer



1258

J Glob Optim (2013) 56:1247-1293

1960 —

1970 —

1980 —

1990 —

2000 —

(1961) Hooke and Jeeves algorithm is proposed [64]

(1962) First simplex-based optimization algorithm [132]
(1965) Nelder-Mead simplex algorithm is proposed [99]

(1969) First use of trust-region quadratic-based models [141]

(1973) First published monograph [25]

(1975) Genetic algorithms are proposed [58]

(1979) Hit-and-run algorithms are proposed [21]

1983) First use of simulated annealing in optimization [78]

1989) DACE stochastic model is proposed [122]

1991) Convergence of multi-directional search algorithms is shown [134]
1991) Implicit filtering is proposed [142]

1993) Ideas from Lipschitzian optimization introduced [72]

1994) Geometry considerations for points in trust-region methods [110]

(

(

(

(

(

(

(1995) Particle swarm algorithm [44,77] is proposed
(1997) DACE surrogate model introduced [126]
(1998) First use of radial basis functions in surrogate models [111]
(1999) Introduction of multilevel coordinate search [65]

(2002) First use of augmented Lagrangian in pattern search methods [85]
(2003) Generating set nomenclature introduced [79]

(

2004) Incorporation of filters [7] and simplex derivatives [40] in pattern
search

(2009) First textbook dedicated to derivative-free optimization [35]

Fig. 1 Timeline of innovation in derivative-free optimization

whether the algorithm partitions the search space into subsets. We thus consider algorithms
as belonging to two major groups:

1. Algorithms that do not partition the search space. In this case, the selection step
uses information from a subset of points and the next point to be evaluated may be
located anywhere in the search space. An example of methods using information from a
single point is simulated annealing. In this algorithm, each iteration uses the incum-
bent to generate a new point through a randomization process. Examples of methods

@ Springer



J Glob Optim (2013) 56:1247-1293 1259

Table 1 Citations of most cited

icati ar : itations?

works in derivative-free Publication Year appeared Citations

algorithms Hooke and Jeeves [64] 1961 2,281
Nelder and Mead [99] 1965 13,486
Brent [25] 1973 2,019
Holland [58] 1975 31,494

a Kirkpatrick et al. [78] 1983 23,053

From Google Scholar on 20 )
December 2011 Eberhart and Kennedy [44,77] 1995 20,369

using information from multiple previously evaluated points are genetic algorithms,
RBF methods, the poll step in pattern search methods, and the Nelder—-Mead algorithm.
In genetic algorithms, for instance, each iteration considers a set of evaluated points
and generates new points through multiple randomization processes. RBF methods gen-
erate the next point by optimizing a model of the function created using information
from all previously evaluated points. In generating set search methods, each iteration
evaluates points around the current iterate in directions generated and ordered using
information from previously evaluated points. These directions are usually required to
be positive spanning sets in order to guarantee convergence via a sequence of pos-
itive steps over these directions. MADS methods use information from previously
evaluated points to produce the best search directions out of an infinite set of search
directions. Finally, the Nelder—Mead algorithm generates the next point by consider-
ing information of the geometry and objective values of a set of previously evaluated
points.

2. Algorithms that partition the search space. In this case, partition elements are assigned
priorities used later to select the most promising partition elements. The methods that rely
on partitioning include direct methods, such as DIRECT, the model-based trust-region
algorithms, the largely direct approach of MCS, which also incorporates model-based
local search, and approaches akin to branch-and-bound. In DIRECT, the partitions are
generated in a way that evaluated points lie at the center of partition elements. MCS,
on the other hand allows evaluated points on the boundary of partition elements. While
DIRECT does not use an explicit model of f and MCS involves local quadratic mod-
els of f, branch-and-bound combines partitioning with models of the gradient of f.
Finally, trust-region methods use information from multiple previously evaluated points.
These methods partition the space to two subsets that change over the course of the
algorithm: a region of interest (the trust region) in the neighborhood of the current iterate
and its complement. The next point to be evaluated is typically obtained by optimiz-
ing an interpolating model using information from a subset of previously evaluated
points.

5 Derivative-free optimization software

The purpose of this and the following two sections is to examine the status of software
implementations of the algorithms reviewed above. The software implementations for which
results are presented here have been under development and/or released since 1998. They
are all capable of dealing with black-box functions in a non-intrusive way, i.e., the source
code of the optimization problem to be solved is assumed to be unavailable or impractical
to modify. Table 2 lists the solvers considered, along with their main characteristics. Each

@ Springer



1260

J Glob Optim (2013) 56:1247-1293

Table 2 Derivative-free solvers considered in this paper

Solver URL Version Language Bounds Constraints
ASA www.ingber.com 2630 C Required No
BOBYQA Available by email from 2009 Fortran ~ Required No
mjdp@cam.ac.uk
CMA-ES www.Iri.fr/~hansen/cmaesintro. 3.26beta Matlab Optional No
html
DAKOTA/DIRECT www.cs.sandia.gov/dakota/ 42 C++ Required Yes
DAKOTA/EA www.cs.sandia.gov/dakota/ 42 C++ Required Yes
DAKOTA/PATTERN www.cs.sandia.gov/dakota/ 42 C++ Required Yes
DAKOTA/SOLIS-WETS www.cs.sandia.gov/dakota/ 4.2 C++ Required Yes
DFO projects.coin-or.org/Dfo 2.0 Fortran  Required Yes
FMINSEARCH www.mathworks.com 1.1.6.2 Matlab No No
GLOBAL www.inf.u-szeged.hu/~csendes 1.0 Matlab Required No
HOPSPACK software.sandia.gov/trac/hopspack 2.0 C++ Optional Yes
IMFIL www4.ncsu.edu/~ctk/imfil.html 1.01 Matlab Required Yes
MCS www.mat.univie.ac.at/~neum/ 2.0 Matlab Required No
software/mcs/
NEWUOA Available by email from 2004 Fortran  No No
mjdp@cam.ac.uk
NOMAD www.gerad.ca/nomad/ 33 C++ Optional Yes
PSWARM www.norg.uminho.pt/aivaz/pswarm/ 1.3 Matlab Required Yes?
SID-PSM www.mat.uc.pt/sid-psm/ 1.1 Matlab Optional Yes?
SNOBFIT www.mat.univie.ac.at/~neum/ 2.1 Matlab Required No
software/snobfit/
TOMLAB/GLCCLUSTER tomopt.com 73 Matlab Required Yes
TOMLAB/LGO www.pinterconsulting.com/ 7.3 Matlab Required Yes
TOMLAB/MULTIMIN tomopt.com 7.3 Matlab Required Yes
TOMLAB/OQNLP tomopt.com 73 Matlab Required Yes

4 Handles linear constraints only

solver is discussed in detail in the sequel. The column ‘Bounds’ refers to the ability of solvers
to handle bounds on variables. Possible entries for this column are “no” for solvers that do
not allow bounds; “required” for solvers that require bounds on all variables; and “optional”
otherwise. The column ‘Constraints’ refers to the ability of solvers to handle linear algebraic
constraints and general constraints that are available as a black-box executable but not in
functional form.

5.1 AsAa

Adaptive Simulated Annealing (ASA) [68] is a C implementation developed for unconstrained
optimization problems. ASA departs from traditional simulated annealing in that it involves a
generating probability density function with fatter tails than the typical Boltzmann distribu-
tion. This allows ASA to possibly escape from local minima by considering points far away
from the current iterate. Separate temperature parameters are assigned for each variable and
they are updated as the optimization progresses.

@ Springer


www.ingber.com
www.lri.fr/~hansen/cmaesintro.html
www.lri.fr/~hansen/cmaesintro.html
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
www.cs.sandia.gov/dakota/
projects.coin-or.org/Dfo
www.mathworks.com
www.inf.u-szeged.hu/~csendes
software.sandia.gov/trac/hopspack
www4.ncsu.edu/~ctk/imfil.html
www.mat.univie.ac.at/~neum/software/mcs/
www.mat.univie.ac.at/~neum/software/mcs/
www.gerad.ca/nomad/
www.norg.uminho.pt/aivaz/pswarm/
www.mat.uc.pt/sid-psm/
www.mat.univie.ac.at/~neum/software/snobfit/
www.mat.univie.ac.at/~neum/software/snobfit/
tomopt.com
www.pinterconsulting.com/
tomopt.com
tomopt.com

J Glob Optim (2013) 56:1247-1293 1261

5.2 BOBYQA

Bound Optimization BY Quadratic Approximation (BOBYQA) is a Fortran implementation
of Powell’s model-based algorithm [115]. BOBYQA is an extension of the NEWUOA algorithm
to bounded problems with additional considerations on the set of rules that maintain the set
of interpolating points.

5.3 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [55] is a genetic algorithm
implemented in multiple languages including C, Matlab, and Python. Mutation is per-
formed by a perturbation with expected value zero and a covariance matrix which is iteratively
updated to guide the search towards areas with expected lower objective values [56].

5.4 DAKOTA solvers

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) [45] is a project
at Sandia National Laboratories. DAKOTA’s initial scope was to create a toolkit of black-
box optimization methods. The scope was later expanded to include additional optimization
methods and other engineering applications, including design of experiments, and nonlinear
least squares.

DAKOTA contains a collection of optimization software packages featuring the COLINY
library [124] that includes, among others, the following solvers that we tested:

DAKOTA/EA: an implementation of various genetic algorithms;

DAKOTA/DIRECT: an implementation of the DIRECT algorithm;
DAKOTA/PATTERN: various pattern search methods; and

DAKOTA/SOLIS-WETS: greedy search, comparing the incumbent with points gener-
ated from a multivariate normal distribution.

el

5.5 DFO

Derivative Free Optimization (DFO) [28,125] is an open-source Fortran implementation of
the trust-region-based algorithm originally developed by Conn et al. [31,32] and expanded
by Conn et al. [33]. DFO is a local optimization method designed to handle very expensive
function evaluations for small-dimensional problems with fewer than 50 variables. Given a
set of points, DFO identifies the point with the best objective found and builds a quadratic
model by interpolating a selected subset of points. The resulting model is optimized within a
trust region centered at the best point. Our computational experiments used the open-source
Fortran software TPOPT [29] to solve the trust-region subproblems.

5.6 FMINSEARCH
FMINSEARCH is an implementation of the Nelder-Mead simplex-based method of Lagarias

et al. [81]. This code is included as a Matlab built-in function in the Optimization
Toolbox and handles unconstrained optimization problems.

@ Springer



1262 J Glob Optim (2013) 56:1247-1293

5.7 GLOBAL

GLOBAL [37] is a Matlab implementation of a multistart stochastic method proposed by
Boender et al. [20]. GLOBAL draws random uniformly distributed points in a space of inter-
est, selects a sample, and applies a clustering procedure. The derivative-free local search
solver UNIRANDI [69], based on random direction generation and linear search, is used
from points outside the cluster.

5.8 HOPSPACK

Hybrid Optimization Parallel Search PACKage (HOPSPACK) [108] is a parallel processing
framework implemented in C+4+ that includes a GSS local solver. The user is allowed to
perform an asynchronous parallel optimization run using simultaneously the embedded GSS
local solver, along with user-provided solvers.

5.9 IMFIL

IMFIL [74]is a Matlab implementation of the implicit filtering algorithm [50, 142].

5.10 MCS

Multilevel coordinate search (MCS) [101] is a Matlab implementation of the algorithm
proposed by Huyer and Neumaier [65] for global optimization of bound-constrained
problems.

5.11 NEWUOA

NEWUOA [114] is a Fortran implementation of Powell’s model-based algorithm for deriv-
ative-free optimization [113]. The inputs to NEWUOA include initial and lower bounds for
the trust-region radius, and the number of function values to be used for interpolating the
quadratic model.

5.12 NOMAD

NOMAD [6,82] is a C++ implementation of the LTMADS [11] and ORTHO-MADS (8]
methods with the extreme barrier [11], filter [2] and progressive barrier [12] approaches to
handle general constraints. It is designed to solve nonlinear, nonsmooth, noisy optimization
problems. NOMAD’s termination criterion allows for a combination of the number of points
evaluated, minimum mesh size, and the acceptable number of consecutive trials that fail to
improve the incumbent.

A related implementation, NOMADm [3], is a collection of Matlab functions that solve
bound-constrained, linear or nonlinear optimization problems with continuous, discrete, and
categorical variables.

5.13 PSWARM

PSWARM [137] is a C implementation of the particle swarm pattern search method [138]. Its
search step performs global search based on the particle swarm algorithm. Its poll step relies
on a coordinate search method. The poll directions coincide with positive and negative unit
vectors of all variable axes.

@ Springer



J Glob Optim (2013) 56:1247-1293 1263

PSWARM allows the user to compile and use the solver as a stand-alone software or as a
custom AMPL solver. A related Matlab implementation PSwarmM is also available [137].

5.14 SID-PSM

SID-PSM [41] is a Matlab implementation of a pattern search method with the poll
step guided by simplex derivatives [40]. The search step relies on the optimization of
quadratic surrogate models [39]. SID-PSM is designed to solve unconstrained and con-
strained problems.

5.15 SNOBFIT

SNOBFIT is a Matlab implementation of the branch-and-fit algorithm proposed by Huyer
and Neumaier [66].

5.16 TOMLAB solvers

TOMLAB [60] is a Mat 1ab environment that provides access to several derivative-free opti-
mization solvers, the following of which were tested:

1. TOMLAB/GLCCLUSTER [60, pp. 109-111]: an implementation of the DIRECT algo-
rithm [71] hybridized with clustering techniques [59];

2. TOMLAB/LGO [107]: a suite of global and local nonlinear solvers [106] that implements

a combination of Lipschitzian-based branch-and-bound with deterministic and stochas-

tic local search (several versions of L.GO are available, for instance under Maple, and

may offer different features than TOMLAB/LGO);

TOMLAB/MULTIMIN [60, pp. 148—151]: a multistart algorithm; and

4. TOMLAB/OQNLP [62]: a multistart approach that performs searches using a local NLP
solver from starting points chosen by a scatter search algorithm.

e

5.17 Additional solvers considered

In addition to the above solvers for which detailed results are presented in the sequel, we
experimented with several solvers for which results are not presented here. These solvers
were:

1. PRAXIS: an implementation of the minimization algorithm of Brent [25];

2. TOMLAB/GLBSOLVE [60, pp. 106-108]: an implementation of the DIRECT algo-
rithm [72], specifically designed to handle box-bounded problems;

3. TOMLAB/GLCSOLVE [60, pp. 118-122]: an implementation of an extended version of
the DIRECT algorithm [72] that can handle integer variables and linear or nonlinear
constraints;

4. TOMLAB/EGO [61, pp. 11-24]: an implementation of the EGO algorithm [73, 126] mod-
ified to handle linear and nonlinear constraints;

5. TOMLAB/RBFSOLVE [61, pp. 5-10]: an implementation of the radial basis function
[19,53] that can handle box-constrained global optimization problems.

The PRAXIS solver is one of the first derivative-free optimization solvers developed. This
solver had below average performance and has not been updated since its release in 1973.
Results for the above four TOMLAB solvers are not included in the comparisons since these
solvers have been designed with the expectation for the user to provide a reasonably small
bounding box for the problem variables [59].

@ Springer



1264 J Glob Optim (2013) 56:1247-1293

6 Illustrative example: camel6

To illustrate and contrast the search strategies that are employed by different algorithms,
Fig. 2 shows how the different solvers progress for camel6. This two-dimensional test
problem, referred to as the ‘six-hump camel back function,” exhibits six local minima, two of
which are global minima. In the graphs of Fig. 2, red and blue are used to represent high and
low objective function values, respectively. Global minima are located at [—0.0898, 0.7126]

2 0 2 0 -2 0 2
BOBYQA CMA-ES DAKOTA/DIRECT

-2 0 2 -2 0 2 -2 0 2
DAKOTA/EA DAKOTA/PATTERN DAKOTA/SOLIS-WETS DFO

-2 0 2 2 0 2
FMINSEARCH GLOBAL HOPSPACK IMFIL

PSWARM

-2 0 -2 = 0 2 I
TOMLAB/GLCCLUSTER TOMLAB/LGO

2

2 2
TOMLAB/MULTIMIN TOMLAB/OQNLP

-2 2

0

Fig. 2 Solver search progress for test problem camel6

@ Springer



J Glob Optim (2013) 56:1247-1293 1265

and [0.0898, —0.7126] and are marked with magenta circles. Each solver was given a limit of
2,500 function evaluations and the points evaluated are marked with white crosses. Solvers
that require a starting point were given the same starting point. Starting points are marked
with a green circle. The trajectory of the progress of the best point is marked with a cyan
line, and the final solution is marked with a yellow circle. As illustrated by these plots,
solvers DAKOTA /PATTERN, DAKOTA/SOLIS-WETS, FMINSEARCH, and NEWUOA per-
form a local search, exploring the neighborhood of the starting point and converging to a
local minimum far from the global minima. DIRECT-based methods DAKOTA/DIRECT
and TOMLAB/GLCCLUSTER perform searches that concentrate evaluated points around the
local minima. Indeed, the two global minima are found by these solvers.

It is clear from Fig. 2 that the stochastic solvers CMA-ES, DAKOTA/EA, and PSWARM
perform a rather large number of function evaluations that cover the entire search space,
while local search algorithms terminate quickly after improving the solution of the starting
point locally. Partitioning-based solvers seem to strike a balance by evaluating more points
than local search algorithms but fewer than stochastic search approaches.

7 Computational comparisons
7.1 Test problems

As most of the optimization packages tested in this study were designed for low-dimen-
sional unconstrained problems, the problems considered were restricted to a maximum of
300 variables with bound constraints only. The solvers were tested on the following problems:

1. Richtarik’s [119] piece-wise linear problems:
Il}inm?x{|<ai,x)| i=1,2,...,m},
2. Nesterov’s [100] quadratic test problems:
min - Ax — b3 + [l
x 2
3. avariant of Nesterov’s test problems without the nonsmooth term:
min 1||Ax — b||%,
x 2
4. the ARWHEAD test problem from Conn et al. [30]:
n—1
min (7 + ;) —4x; + 3,

i=1

5. 245 nonconvex problems from the globallib [51] and princetonlib [116],
6. and 49 nonsmooth problems from the collection of LukSan and VIcek [89].

For the first four families of problems, instances were generated with sizes of 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 100, 200, and 300 variables. For each problem size, five random
instances were generated for Richtarik’s and both variants of Nesterov’s problems.

We use the number of variables to classify each problem in one of four groups as shown in
Table 3. The test problems of Table 3 are diverse, involving sums of squares problems, qua-
dratic and higher degree polynomials, continuous and discontinuous functions, 32 problems

@ Springer



1266 J Glob Optim (2013) 56:1247-1293

Table 3 Characteristics of test problems

n Number of convex problems Number of nonconvex problems Total Navg
Smooth  Non-smooth  Total Smooth  Non-smooth  Total

1-2 0 9 9 86 4 90 99 1.9
3-9 6 19 25 97 11 108 133 5.1
10-30 30 59 89 27 3 30 119 18.5
31-300 42 74 116 35 0 35 153 104.6
1-300 78 161 239 245 18 263 502 37.6
1 T T T T T T T T T ]

2 T | —

3 ] -

4 i

5 -

6 -

7 .

8 -

9 -

0 T | -

1 -

2 -

5 -

6 -

§ ]

% I convex smooth ]

1 [ ] convex nonsmooth b
Eg [_] nonconvex smooth ]
20 ' ) I nonconvex nonsmooth E
1090 ]
110 .
120 .
127 —
155 .
200 .
300 ! ! ! ! ! ! ! ! ]
0 10 20 30 40 50 60 70 80 90 100

Fig. 3 Number of variables versus number of test problems

with trigonometric functions, and 33 problems with exponential or logarithmic functions.
A total of 239 of the test problems are convex, while 263 are non-convex. The number of
variables (n) ranged from 1 to 300, with an average number of variables (7,y¢) equal to 37.6.
Figure 3 presents the distribution of problems by dimensionality and by problem class.

All test problems are available at http://archimedes.cheme.cmu.edu/?q=dfocomp. The
same web site provides detailed results from the application of the different solvers to the
test problems.

7.2 Experimental setup and basis of solver comparisons

All computations were performed on Intel 2.13 GHz processors running Linux and Mat lab
R2010a. The 22 solvers of Table 2 were tested using a limit of 2,500 function evaluations
in each run. To put this limit in perspective, 2,500 function evaluations for the bioremedation
model of [98], which represents a typical application of derivative-free optimization methods
to expensive engineering problems, would run for about 200 CPU days.

Variable bounds are required by many of the solvers but were not available for many test
problems. For problems that lacked such bounds in the problem formulation, we restricted
all variables to the interval [—10, 000, 10, 000] unless these bounds resulted in numerical
difficulties due to overflowing. In such cases, tighter bounds were used, provided that they
still included the best known solution for each problem. The same variable bounds were

@ Springer


http://archimedes.cheme.cmu.edu/?q=dfocomp

J Glob Optim (2013) 56:1247-1293 1267

Table 4 Bounds on test problems

Available Number of problems Total
bounds

Convex Nonconvex

Smooth Nonsmooth Total Smooth Nonsmooth Total
Both 0 5 5 52 3 55 60
Lower 0 72 72 9 4 13 85
None 78 84 162 184 11 195 357
Total 78 161 239 245 18 263 502

used for all solvers. For solvers that do not accept bounds, a large objective function value
was returned for argument values outside the bounding box. This value was constant for
all iterations and solvers. Whenever starting points were required, they were drawn from a
uniform distribution from the box-bounded region. The same randomly generated starting
points were used for all solvers. Table 4 presents the number of ‘bounded’ test problems
that came with lower and upper bounds for all variables, the number of test problems that
came with lower bounds only, and ‘unbounded’ test problems that lacked a lower and upper
bounds for at least one variable.

Only objective function values were provided to all solvers. The only exception was
SID-PSM, which requires the gradient of the constraints. As the problems considered here
were bound-constrained with no additional constraints, the gradients provided to SID-PSM
were simply a set of unit vectors.

Many of the test problems are nonconvex and most of the solvers tested are local solvers.
Even for convex problems, performance of a solver is often affected by the starting point
chosen. For this reason, solvers that permitted the use of a starting point were run once from
each of ten different starting points. This was possible for all solvers with the exception of
DAKOTA/DIRECT, DAKOTA/EA, GLOBAL, and MCS. The latter solvers override the selec-
tion of a starting point and start from the center of the box-bounded region. This resulted in
a total number of 112,448 optimization instances to be solved.

In order to assess the quality of the solutions obtained by different solvers, we compared
the solutions returned by the solvers against the globally optimal solution for each problem.
A solver was considered to have successfully solved a problem during a run if it returned a
solution with an objective function value within 1 % or 0.01 of the global optimum, whichever
was larger. In other words, a solver was considered successful if it reported a solution y such
that f(y) < max(1.01f(x*), f(x*) + 0.01, where x* is a globally optimal solution for
the problem. To obtain global optimal solutions for the test problems, we used the general-
purpose global optimization solver BARON [123,133] to solve as many of the test problems
as possible. Unlike derivative-free solvers, BARON requires explicit algebraic expressions
rather than function values alone. BARON’s branch-and-bound strategy was able to guarantee
global optimality for most of the test problems, although this solver does not accept trigo-
nometric and some other nonlinear functions. For the latter problems, LINDOGLOBAL [87]
was used to obtain a global solution.

In comparing the quality of solutions returned, we will compare the average- as well
as best-case behavior of each solver. For the average-case behavior, we compare solvers
using for each solver the median objective function value of the ten different runs. For the
best-case comparison, we compare the best solution found by each solver after all ten runs.

@ Springer



1268 J Glob Optim (2013) 56:1247-1293

0.8 i
+ 1 to 2 variables

O  3to 9 variables
0.6 | 10 to 30 variables 4
X 31 to 300 variables

0.4} ]
X
X
0.2 X |
ob—p—@ ¢ D b—B
E k Z X < o Q < < I 2 0 w Jd < z oo
zroegodpr2R3535gd8zE88=z3E 3G
o oo W w << g Ws o< S sS S << a9 1L x =2 2 -
I O F a £ =2 0§ = < = =3 £ 9 ok 0@
O zZ a E o o 1 = o u m<§—‘O—IOD
7"”2&%5,:9 z 2 2 390922 ag
-
5 2 I o 9d = 3 3 39
< 5 %) T [= < = 5
< 9 < 2 O 3
o £ = Z = 2
() Q O i)
< [ =
g o)
o =

Fig. 4 Fraction of problems over the 10 CPU minute limit

Average-case behavior is presented in the figures and analyzed below unless explicitly stated
otherwise.

Most instances were solved within a few minutes. Since the test problems are algebraically
and computationally simple and small, the total time required for function evaluations for all
runs was negligible. Most of the CPU time was spent by the solvers on processing function
values and determining the sequence of iterates. A limit of 10 CPU minutes was imposed on
each run. Figure 4 presents the fraction of problems of different size that were terminated at
any of the 10 optimization instances after reaching the CPU time limit. As seen in this figure,
no solver reached this CPU time limit for problems with up to nine variables. For problems
with ten to thirty variables, only SID-PSM and SNOBFIT had to be terminated because of
the time limit. These two solvers also hit the time limit for all problems with more than thirty
variables, along with seven additional solvers.

7.3 Algorithmic settings

Algorithmic parameters for the codes under study should be chosen in a way that is reflective
of the relative performance of the software under consideration. Unfortunately, the optimi-
zation packages tested have vastly different input parameters that may have a significant
impact upon the performance of the algorithm. This presents a major challenge as a compu-
tational comparison will have to rely on a few choices of algorithmic parameters for each
code. However, for expensive experiments and time-demanding simulations like the bio-
remedation model of [98], practitioners cannot afford to experiment with many different
algorithmic options. Even for less expensive functions, most typical users of optimization
packages are not experts on the theory and implementation of the underlying algorithm and
rarely explore software options. Thus, following the approach of [102] in a recent compari-

@ Springer



J Glob Optim (2013) 56:1247-1293 1269

0.8 T T
BRI NNNIVINVVINN |
B — <+ — TOMLAB/GLCCLUSTER
0.7} 4 1 A MCS
4 —&— TOMLAB/OQNLP
‘ TOMLAB/MULTIMIN
SNOBFIT
BOBYQA
-—x—- TOMLAB/LGO
-—v—- SID-PSM
NEWUOA
CMA-ES

—<+ - HOPSPACK
—8— FMINSEARCH
— & — NOMAD

DFO
—H— PSWARM
- DAKOTA/DIRECT
—+— ASA
— & — IMFIL
-—#%—- DAKOTA/EA
—+— DAKOTA/PATTERN
— & — DAKOTA/SOLIS-WETS
— & — GLOBAL

0 500 1000 1500 2000 2500

Fig. 5 Fraction of convex smooth problems solved as a function of allowable number of function evaluation

son of optimization codes, comparisons were carried out using the default parameter values
for each package, along with identical stopping criteria and starting points across solvers.
Nonetheless, all software developers were provided with early results of our experiments and
given an opportunity to revise or specify their default option values.

Optimization instances in which a solver used fewer function evaluations than the imposed
limit were not pursued further with that particular solver. In practice, a user could employ
the remaining evaluations to restart the solver but this procedure is highly user-dependent.
Our experiments did not use restart procedures in cases solvers terminated early.

7.4 Computational results for convex problems

Figure 5 presents the fraction of convex smooth problems solved by each solver to within the
optimality tolerance. The horizontal axis shows the progress of the algorithm as the number
of function evaluations gradually reached 2,500. The best solver, TOMLAB/GLCCLUSTER,
solved 79 % of convex smooth problems, closely followed by MCS which solved 76 %, and
SNOBFIT, TOMLAB/OQNLP, and TOMLAB/MULTIMIN all of which solved over 58 % of the
problems. The solvers ASA, DAKOTA /EA, DAKOTA / PATTERN, DAKOTA/SOLIS-WETS,
GLOBAL, and IMFIL did not solve any problems within the optimality tolerance. Figure 6
presents the fraction of convex nonsmooth problems solved. At 44 and 43 % of the convex
nonsmooth problems solved, TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER have a
significant lead over all other solvers. TOMLAB/LGO and TOMLAB/OQNLP follow with 22
and 20 %, respectively. Fifteen solvers are not even able to solve 10 % of the problems. It is
strange that model-based solvers, which have nearly complete information for many of the

@ Springer



1270 J Glob Optim (2013) 56:1247-1293

05
045} | TOMLAB/MULTIMIN
— 4 - TOMLAB/GLCCLUSTER
-—x—- TOMLAB/LGO
041 1 —&— TOMLAB/OQNLP
CMA-ES
i | —v— sID-PsM
0.35 7 s
— & — NOMAD
0.3 { —=— FMINSEARCH
SNOBFIT
| NEWUOA
025 BOBYQA

ooock — O~ IMFIL
pp>  —B— PSWARM

DFO
—<+ - HOPSPACK
— ©- — DAKOTA/SOLIS-WETS
— & — GLOBAL
-~ DAKOTA/DIRECT
SHEEEEEEE eriv —+— DAKOTA/PATTERN
—+— ASA
-—#—- DAKOTA/EA

0.2

0.15

0.1

0.05

0 500 1000 1500 2000 2500

Fig. 6 Fraction of convex nonsmooth problems solved as a function of allowable number of function evalu-
ations

tested problems, solve a small fraction of problems. However, some of these solvers are old
and most of them are not extensively tested.

A somewhat different point of view is taken in Figs. 7 and 8, where we present the fraction
of problems for which each solver achieved a solution as good as the best solution among all
solvers, without regard to the best known solution for the problems. When multiple solvers
achieved the same solution, all of them were credited as having the best solution among all
solvers. As before, the horizontal axis denotes the number of allowable function evaluations.

Figure 7 shows that, for convex smooth problems, TOMLAB/MULTIMIN has a brief lead
until 200 function calls, at which point TOMLAB/GLCCLUSTER takes the lead, finishing
with 81 %. TOMLAB/MULTIMIN and MCS follow closely at around 76 %. The performance
of TOMLAB/MULTIMIN, MCS and TOMLAB/OQNLP improves with the number of allow-
able function evaluations. Ten solvers are below the 10 % mark, while five solvers did not
find a best solution for any problem for any number of function calls.

Similarly, Fig. 8 shows that, for convex nonsmooth problems, the solver TOMLAB /MUL-
TIMIN leads over the entire range of function calls, ending at 2,500 function evaluations with
the best solution for 66 % of the problems. TOMLAB/GLCCLUSTER follows with the best
solution for 52 % of the problems. There is a steep difference with the remaining twenty solv-
ers, which, with the exception of TOMLAB/LGO, TOMLAB/OQNLP, CMA-ES and SID-PSM,
are below the 10 % mark.

An interesting conclusion from Figs. 5, 6, 7, and 8 is that, with the exception of NEWUOA
and BOBYQA for convex smooth problems, local solvers do not perform as well as global
solvers do even for convex problems. By casting a wider net, global solvers are able to find
better solutions than local solvers within the limit of 2,500 function calls.

@ Springer



J Glob Optim (2013) 56:1247-1293

1271

0.9
o8l W
PAVAVASS - &2 ANV, N
A IR

07t N |

\d

P ;

<Z PAVAVAVAVAN
06} R : W&%&f

0.5
0.4
031
0.2

04}

500 1000

1500

2000

— < — TOMLAB/GLCCLUSTER
TOMLAB/MULTIMIN
A MCS

—+— TOMLAB/OQNLP
SNOBFIT

/A BOBYQA

-—x—- TOMLAB/LGO

-—v—- SID-PSM
NEWUOA
CMA-ES

—<+ - HOPSPACK
—+&— FMINSEARCH
— & — NOMAD

DFO
—H— PSWARM
—+— ASA
— ¢ — IMFIL
-~ DAKOTA/DIRECT
-——- DAKOTA/EA
—+— DAKOTA/PATTERN
— & — DAKOTA/SOLIS-WETS
— & — GLOBAL

2500

Fig. 7 Fraction of convex smooth problems, as a function of allowable number of function evaluations, for
which a solver found the best solution among all solvers

0.7

05

0.4

03[

0.2

0.1 2

Tl ten e nlen s enlenlenlenlanlentenleta

500

1000

1500

2000

2500

TOMLAB/MULTIMIN
—<+ — TOMLAB/GLCCLUSTER
-—x—- TOMLAB/LGO
—+— TOMLAB/OQNLP
CMA-ES
-—v—- SID-PSM
—+&— FMINSEARCH
A MCS
— & — NOMAD
— & — IMFIL
NEWUOA
—&— PSWARM
SNOBFIT
DFO
A BOBYQA
—<+ - HOPSPACK
— & — DAKOTA/SOLIS-WETS
— & — GLOBAL
- DAKOTA/DIRECT
—+— DAKOTA/PATTERN
—+— ASA
-—#%— DAKOTA/EA

Fig. 8 Fraction of convex nonsmooth problems, as a function of allowable number of function evaluations,
for which a solver found the best solution among all solvers

@ Springer



1272 J Glob Optim (2013) 56:1247-1293

0.8

TOMLAB/MULTIMIN
—<+ — TOMLAB/GLCCLUSTER
A MCS
-—x—- TOMLAB/LGO
—H— TOMLAB/OQNLP
-—v—- SID-PSM
SNOBFIT
CMA-ES
BOBYQA
—b— PSWARM
—&— FMINSEARCH
NEWUOA
— & — NOMAD
—<+ — HOPSPACK
DFO
- DAKOTA/DIRECT
— <& — GLOBAL
— 6 — DAKOTA/SOLIS-WETS
—+— DAKOTA/PATTERN
— & — IMFIL
-—%— DAKOTA/EA
+— ASA

0 . . . .
0 500 1000 1500 2000 2500

Fig. 9 Fraction of nonconvex smooth problems solved as a function of allowable number of function evalu-
ations

7.5 Computational results with nonconvex problems

Figure 9 presents the fraction of nonconvex test problems for which the solver median solu-
tion was within the optimality tolerance from the best known solution. As shown in this
figure, MCS (up to 800 function evaluations and TOMLAB/MULTIMIN (beyond 800 func-
tion evaluations) attained the highest percentage of global solutions, solving over 70 % of
the problems at 2,500 function evaluations. The group of top solvers also includes TOM-
LAB/GLCCLUSTER, TOMLAB/LGO and TOMLAB/OQNLP, which found over 64 % of the
global solutions. Nine solvers solved over 44 % of the cases, and only two solvers could not
find the solution for more than 10 % of the cases. CMA-ES returned the best results among
the stochastic solvers.

At a first glance, it may appear surprising that the percentage of nonconvex smooth prob-
lems solved by certain solvers (Fig. 9) exceeds the percentage of convex ones (Fig. 5). Careful
examination of Table 3, however, reveals that the nonconvex problems in the test set contain,
on average, fewer variables.

Figure 10 presents the fraction of nonconvex nonsmooth test problems for which the solver
median solution was within the optimality tolerance from the best known solution. Although
these problems are expected to be the most difficult from the test set, TOMLAB/MULTIMIN
and TOMLAB/LGO still managed to solve about 40 % of the cases. Comparing Figs. 6 and 10,
we observe that the percentage of nonconvex nonsmooth problems solved by several solvers
is larger than that for the convex problems. Once again, Table 3 reveals that the nonconvex
nonsmooth problems are smaller, on average, than their convex counterparts.

Figures 11 and 12 present the fraction of problems for which each solver found the best
solution among all solvers. As seen in these figures, after a brief lead by MCS, TOMLAB /MUL -

@ Springer



J Glob Optim (2013) 56:1247-1293 1273

0.5
0.45 - , TOMLAB/MULTIMIN
-—x—- TOMLAB/LGO
—— PSWARM
04r ?<x%xx»<x»ex9®<x»<>eex>ex—>exxse<>exx%x*x>exx¥ A MCS
. -—y—- SID-PSM
0.35 | ’ | CMA-ES
I —&— TOMLAB/OQNLP
I —&— FMINSEARCH
03r i { —< - TOMLAB/GLCCLUSTER
s PSSR — & — NOMAD
-+ DAKOTA/DIRECT
0.25 DFO
SNOBFIT
0.2 NEWUOA
— & — IMFIL
—< — HOPSPACK
015 A BOBYQA
—+— ASA
0.1 -—#—- DAKOTA/EA
—+— DAKOTA/PATTERN
— & — DAKOTA/SOLIS-WETS
0.05 — & — GLOBAL

0 500 1000 1500 2000 2500

Fig. 10 Fraction of nonconvex nonsmooth problems solved as a function of allowable number of function
evaluations

0.9

TOMLAB/MULTIMIN
A MCS
— <+ — TOMLAB/GLCCLUSTER
AAAAAAAADNAAAAAAAAANNNANSDG - —X— TOMLAB/LGO
AR

0.8 |

0.7 ’A AAAAAAAAAAAA
IRAZIVVAN

\ . —+— TOMLAB/OQNLP
PAR i <<<<<« S

-—v—- SID-PSM

~-4---- BOBYQA
SNOBFIT
CMA-ES

—H— PSWARM

—&— FMINSEARCH

— & — NOMAD
NEWUOA

o —<+ — HOPSPACK

RIS DFO

71 % DAKOTA/DIRECT

— & — GLOBAL

PP A NNV IN A — © — DAKOTA/SOLIS-WETS
: g;e’g’gqveeé6%6%GvaGv#v‘v’vévé%é%éé%GvG DAKOTA/PATTERN

OEOE0RCERRERRREOCER0OCEOCOCOROSCRRRRCRRRRD iﬁ :;AAﬂleA/EA
AR A HX ISP
OO ASA

AAAAAAAL

AOOLELLLS

e elely e T RE T
L

A ARAARRAREE

500 1000 1500 2000 2500

Fig. 11 Fraction of nonconvex smooth problems, as a function of allowable number of function evaluations,
for which a solver found the best solution among all solvers tested

@ Springer



1274 J Glob Optim (2013) 56:1247-1293

0.8

TOMLAB/MULTIMIN
0.7} 1 -—x— TOMLAB/LGO

CMA-ES
-—v—- SID-PSM
06} { —&— PSWARM
—&— FMINSEARCH
<A MCS
05 o, | —&— TOMLAB/OQNLP

\ — < — TOMLAB/GLCCLUSTER
A W ok Yooexooack % DAKOTA/DIRECT
Vo SNOBFIT

— & — NOMAD

DFO
— & — IMFIL
—+— ASA

NEWUOA
— < — HOPSPACK
-—#—- DAKOTA/EA
—— DAKOTA/PATTERN
— © — DAKOTA/SOLIS-WETS
— & — GLOBAL

BOBYQA

0 500 1000 1500 2000 2500

Fig. 12 Fraction of nonconvex nonsmooth problems, as a function of allowable number of function evalua-
tions, for which a solver found the best solution among all solvers tested

TIMIN builds an increasing lead over all other solvers, finding the best solutions for over
83 % of the nonconvex smooth problems. MCS and TOMLAB/GLCCLUSTER follow with
71 %. With a final rate of over 56 % of the cases for most of the range, TOMLAB/MULTIMIN
is dominant for nonconvex nonsmooth problems.

7.6 Improvement from starting point

An alternative benchmark, proposed by Moré and Wild [97], measures each algorithm’s abil-
ity to improve a starting point. For a given 0 < 7 < 1 and starting point x¢, a solver is
considered to have successfully improved the starting point if

f(x0) = fsotver = (1 = T)(f(x0) — fL),

where f(xg) is the objective value at the starting point, f;over iS the solution reported by
the solver, and f7 is a lower bound on the best solution identified among all solvers. Since
the global solution is known, we used it in place of f7 in evaluating this measure. We used
this measure to evaluate the average-case performance of each solver, i.e., a problem was
considered ‘solved’ by a solver if the median solution improved the starting point by at least
a fraction of (1 — ) of the largest possible reduction.

Figure 13 presents the fraction of convex smooth problems for which the starting point
was improved by a solver as a function of the t values. Solvers MCS, DAKOTA/DIRECT,
TOMLAB/GLCCLUSTER and TOMLAB/MULTIMIN are found to improve the starting points
for 100 % of the problems for  values as low as 10~°. Ata first look, it appears pretty remark-
able that a large number of solvers can improve the starting point of 90 % of the problems
by 90 %. Looking more closely at the specific problems at hand reveals that many of them

@ Springer



J Glob Optim (2013) 56:1247-1293 1275
14
0.9 4 A MCS
— < — TOMLAB/GLCCLUSTER
' SNOBFIT
0.8 T TOMLAB/MULTIMIN
-~—x—- TOMLAB/LGO
0.7 ¥ " | -—v— SID-PSM
| 4 BOBYQA
\T —p— TOMLAB/OQNLP
0.6 3 NEWUOA
CMA-ES
05 | —&— FMINSEARCH
: 1l —e -nNomAD
i ¥ —< - HOPSPACK
0.4 . DFO
% DAKOTA/DIRECT
—+— DAKOTA/PATTERN
03 1 —»>— PSWARM
— & — DAKOTA/SOLIS-WETS
0.2 1 1 —¢ - GLOBAL
—+— ASA
N — & — IMFIL
0.1 - ‘3 -—#—- DAKOTA/EA
|
0 ' = = ¥
1E-1 1E-2 1E-3 1E-6 0E+0

Fig. 13 Fraction of convex smooth problems for which starting points were improved within 2,500 function

evaluations vs. T values

\
09 | AN 1 —o - IMFIL
N A MCS
N —— TOMLAB/OQNLP

TOMLAB/MULTIMIN
—<— TOMLAB/GLCCLUSTER
-—x—- TOMLAB/LGO
-—v—- SID-PSM
----%-- DAKOTA/DIRECT
CMA-ES
— ¢ — GLOBAL
—+&— FMINSEARCH
—b>— PSWARM
—<+— HOPSPACK
SNOBFIT
— & — NOMAD
DFO
-—#—- DAKOTA/EA
—+— DAKOTA/PATTERN
NEWUOA
— ©- — DAKOTA/SOLIS-WETS
-4 BOBYQA
—+— ASA

0 .
1E-1 1E-2 1E-3 1E-6

Fig. 14 Fraction of convex nonsmooth problems for which starting points were improved within 2,500 func-

tion evaluations vs. T values

@ Springer



1276 J Glob Optim (2013) 56:1247-1293

TOMLAB/MULTIMIN
A MCS
— < — TOMLAB/GLCCLUSTER
—+— TOMLAB/OQNLP
-—x—- TOMLAB/LGO
-—v—- SID-PSM
SNOBFIT
BOBYQA
CMA-ES
—b>— PSWARM
NEWUOA
— & — NOMAD
----¥---- DAKOTA/DIRECT
—8— FMINSEARCH
—<+ — HOPSPACK
— ¢ — GLOBAL
DFO
— & — DAKOTA/SOLIS-WETS
—+— DAKOTA/PATTERN
— ¢ — IMFIL
-—&—- DAKOTA/EA
—+— ASA

0.2 . .
1E-1 1E-2 1E-3 1E-6 0E+0

Fig. 15 Fraction of nonconvex smooth problems for which starting points were improved within 2,500 func-
tion evaluations vs. t values

involve polynomials and exponential terms. As a result, with a bad starting point, the objec-
tive function value is easy to improve by 90 %, even though the final solution is still far
from being optimal. Similarly, Fig. 14 presents the results for convex nonsmooth problems.
In comparison with the convex smooth problems, the convex nonsmooth problems display
higher percentages and the lines do not drop dramatically. Again, this effect is probably
caused by the lower dimensionality (in average) of the nonconvex problems.

Figures 15 and 16 present results for nonconvex problems. As expected, the performance
for smooth problems is significantly better than for nonsmooth problems. The performance
of MCS, TOMLAB/LGO, TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER is consistent,
at the top group of each of the problem classes.

7.7 Minimal set of solvers

Given that no single solver seems to dominate over all others, the next question addressed
is whether there exists a minimal cardinality subset of the solvers capable of collectively
solving all problems or a certain fraction of all problems. In this case, a problem will be
considered solved if any of the chosen solvers succeeds in solving the problem within the
optimality tolerance during any one of the ten runs from randomly generated starting points.
The results are shown in Figs. 17, 18, 19, and 20 for all combinations of convex/nonconvex
and smooth/nonsmooth problems and in Fig. 21 for all problems. For different numbers of
function evaluations (vertical axis), the bars in these figures show the fraction of problems
(horizontal axis) that are solved by the minimal solver subset. For instance, it is seen in Fig. 17
that one solver (SNOBFIT) is sufficient to solve nearly 13 % of all convex smooth problems

@ Springer



J Glob Optim (2013) 56:1247-1293

1277

0.6

0.5

0.4

0.3

0.2

0.1

0

-—x—- TOMLAB/LGO

—< — TOMLAB/GLCCLUSTER

<A MCS

- DAKOTA/DIRECT
CMA-ES
TOMLAB/MULTIMIN

—p— TOMLAB/OQNLP

-—v—- SID-PSM

—©-— NOMAD

—8— FMINSEARCH

— & — IMFIL

—p— PSWARM

— < — HOPSPACK

-—%—- DAKOTA/EA

— & — DAKOTA/SOLIS-WETS

SNOBFIT
— ¢ — GLOBAL
—+— ASA

DFO

NEWUOA
——+— DAKOTA/PATTERN
-/ BOBYQA

1E-1 1E-2 1E-3

0E+0

Fig. 16 Fraction of nonconvex nonsmooth problems for which starting points were improved within 2,500

function evaluations vs. T values

100

500

1000

1500

2000

2500

0 0.2 0.4

0.6

0.8

I TOMLAB/GLCCLUSTER
SNOBFIT

Fig. 17 Minimum number of solvers required to solve convex smooth test problems for various limits of

function evaluations (best solver performance)

with 100 function evaluations. The collection of SNOBFIT and TOMLAB/GLCCLUSTER is
required to solve up to nearly 15 % of the problems with 100 function evaluations. No other
pair of solvers is capable of solving more than 15 % of these problems with 100 function
evaluations. Also seen in this figure is that the minimal subset of solvers depends on the
number of allowable function evaluations. SNOBFIT and TOMLAB/GLCCLUSTER are in

@ Springer



1278 J Glob Optim (2013) 56:1247-1293

100 ]
500
TOMLAB/MULTIMIN
I TOMLAB/GLCCLUSTER
1000 4 I \MFIL
I TOMLAB/OQNLP
NEWUOA
1500 1 I TOMLAB/LGO
I FMINSEARCH
MCS
2000 | —
2500 ,
0 0.1 0.2 0.3 0.4 05 0.6

Fig. 18 Minimum number of solvers required to solve convex nonsmooth test problems for various limits of
function evaluations (best solver performance)

100 1
500 1 TOMLAB/MULTIMIN

I SID-PSM

1000 | I TOMLAB/OQNLP
SNOBFIT

I TOMLAB/GLCCLUSTER
1500 1 I MCS

[ BOBYQA

| I TOMLAB/LGO

2000

2500

0 0.2 0.4 0.6 0.8 1

Fig. 19 Minimum number of solvers required to solve nonconvex smooth test problems for various limits of
function evaluations (best solver performance)

the minimal set when 1,000 function evaluations are allowed, while SNOBFIT is no longer
necessary when more than 1,000 function evaluations are allowed. For convex nonsmooth
problems, TOMLAB/MULTIMIN enters the minimal set when 500 or more function evalua-
tions are allowed. TOMLAB/MULTIMIN in combination with TOMLAB/GLCCLUSTER are
able to solve over 52 % at 2,500 function evaluations. For nonconvex smooth problems, MCS
is found in the minimal set when 500 or less function evaluations are allowed, solving 66 %
of the problems at 500 function evaluations. TOMLAB/MULTIMIN is in the minimal set of
solvers when 1,000 or more function evaluations are allowed. For nonconvex nonsmooth

@ Springer



J Glob Optim (2013) 56:1247-1293 1279

H f
500 .
CMA-ES
1000 41 I \MFIL
TOMLAB/MULTIMIN
NEWUOA
1500 1 I TOMLAB/LGO
I NOMAD
2000 :
2500
0 0.1 0.2 0.3 0.4 0.6

Fig. 20 Minimum number of solvers required to solve nonconvex nonsmooth test problems for various limits
of function evaluations (best solver performance)

100 “ b

500 .l i TOMLAB/MULTIMIN

I TOMLAB/GLCCLUSTER
I TOMLAB/OQNLP

1000 . 41 I \MFIL
I SID-PSM

SNOBFIT

1500 -‘ 1 I TOMLAB/LGO

s mes

[ BOBYQA
2000 ) NEWUOA
n

0 0.2 0.4 0.6 0.8

Fig. 21 Minimum number of solvers required to solve all test problems for various limits of function evalu-
ations (best solver performance)

problems, NEWUOA, TOMLAB/MULTIMIN, TOMLAB/LGO,and then CMA-ES solved the
largest fraction of problems.

Finally, Fig. 21 shows that TOMLAB/MULTIMIN enters the minimal set of solvers when
500 or more function evaluations are allowed. The combination of TOMLAB/MULTIMIN and
TOMLAB/GLCCLUSTER solved the largest fraction of problems over most problem classes.

@ Springer



1280 J Glob Optim (2013) 56:1247-1293

7.8 Impact of problem size

In general, as the size of the problem increases, the chances of obtaining better solutions
clearly decrease. As seen in Fig. 22, over half of the solvers are able to solve 50 % of prob-
lems with one or two variables, with TOMLAB/GLCCLUSTER, TOMLAB/MULTIMIN, MCS,
TOMLAB/LGO and TOMLAB /OQNLP solving about 90 % of the problems. Figure 23 presents
results for problems with three to nine variables. Half of the solvers are able to solve only
29 % of these problems, while TOMLAB/MULTIMIN solves about 78 % of the problems,
followed by TOMLAB/LGO, TOMLAB/GLCCLUSTER and MCS.

Results with problems with 10-30 variables are presented in Fig. 24 and show that most
of the solvers cannot solve more than 15 % of these problems. Despite the decreasing trend,
TOMLAB/MULTIMIN and TOMLAB/GLCCLUSTER are able to solve over 64 % of these
problems. Finally, results with problems with 31 to 300 variables are presented in Fig. 25.
The same limit of 2,500 function evaluations was used even for the largest problems, in order
to test solvers for their ability to adjust to a limited budget of function evaluations. Many
of the solvers are not able to solve a single problem, while again TOMLAB/GLCCLUSTER
and TOMLAB/MULTIMIN are at the top solving over 28 % of these problems. Once again, a
notable degrading performance is displayed by all solvers as problem size increases.

7.9 Variance of the results

The previous graphs were presented in terms of median and best results among ten problem
instances for each solver with a limit of 2,500 function evaluations. Here, we discuss the
variance of these results, as solver performance is dependent on starting point and random

—<+ — TOMLAB/GLCCLUSTER
TOMLAB/MULTIMIN
A MCS
-—»—- TOMLAB/LGO
B— TOMLAB/OQNLP
-—v—- SID-PSM
CMA-ES
—&— FMINSEARCH
SNOBFIT
—P>— PSWARM
— & — NOMAD
DFO
BOBYQA
— <+ —HOPSPACK
NEWUOA
— <& — GLOBAL
-~--/--- DAKOTA/DIRECT
— & — DAKOTA/SOLIS-WETS
—+— DAKOTA/PATTERN
— <& — IMFIL
-—%—- DAKOTA/EA
—+— ASA

0 500 1000 1500 2000 2500

Fig. 22 Fraction of problems with one to two variables that were solved

@ Springer



J Glob Optim (2013) 56:1247-1293 1281

0.8

TOMLAB/MULTIMIN
0.7 xxxx¢¥ -—*—- TOMLAB/LGO
—<+ — TOMLAB/GLCCLUSTER
A MCS
—+— TOMLAB/OQNLP
-—v—- SID-PSM

CMA-ES

SNOBFIT
v /- BOBYQA
—&— FMINSEARCH
— & — NOMAD

NEWUOA
—p— PSWARM
— <+ — HOPSPACK

DFO
- DAKOTA/DIRECT
— ¢ — GLOBAL
—+— DAKOTA/PATTERN
— & — IMFIL
— © — DAKOTA/SOLIS-WETS
-—%—- DAKOTA/EA
—+— ASA

2SS 0 5 0 0 0 0
T

0 500 1000 1500 2000 2500

Fig. 23 Fraction of problems with three to nine variables that were solved

0.7

TOMLAB/MULTIMIN
— <+ — TOMLAB/GLCCLUSTER
——+H— TOMLAB/OQNLP
<A MCS
-—x—- TOMLAB/LGO
-—v—- SID-PSM
/- BOBYQA
NEWUOA
SNOBFIT
— < — IMFIL
—<+ — HOPSPACK
CMA-ES
- DAKOTA/DIRECT
— & — NOMAD
—P>— PSWARM
DFO
—+— DAKOTA/PATTERN
— & — GLOBAL
—&— FMINSEARCH
— & — DAKOTA/SOLIS-WETS
—+— ASA
-—%—- DAKOTA/EA

0 500 1000 1500 2000 2500

Fig. 24 Fraction of problems with 10-30 variables that were solved

seeds used in the computations. Since the difference in scales of the global solutions and the
range of values of the objective function of the test problems prevent a direct comparison,
objective function values obtained were scaled as follows:

@ Springer



1282 J Glob Optim (2013) 56:1247-1293

0.4

—< — TOMLAB/GLCCLUSTER
0.35} 1 TOMLAB/MULTIMIN
A MCS

4 —— TOMLAB/OQNLP

03}k 43 4 SNOBFIT

BOBYQA
W -—%—- TOMLAB/LGO
025} A | % DAKOTA/DIRECT

4 NEWUOA
4l peRERAAASANS | —< - HOPSPACK
4 ‘ -——- SID-PSM
— & — IMFIL
% CMA—ES
1 ASA
/ — & — NOMAD
4 DFO
N —&— FMINSEARCH
< —b— PSWARM
-—%—- DAKOTA/EA
sy —+— DAKOTA/PATTERN
r — & — DAKOTA/SOLIS-WETS
I —o — GLOBAL

02r

0.1} o4

A
PRAA
o AAAAvAAa‘

0.05

0 500 1000 1500 2000 2500

Fig. 25 Fraction of problems with 31-300 variables that were solved

. f solver — f L

fw—fr’
where fiolver 1S a solution reported by the solver, f7, is the global solution, and fy is the
worst solution obtained by the solver among the ten runs from different starting points. The
resulting fscaled 1s in the interval [0, 1] with a value of 1 corresponding to the global solution
and a value of 0 corresponding to the worst solution reported by the solver.

Figure 26 displays the average scaled best, mean, median and worst results among the ten
optimization instances for all test problems. TOMLAB/GLCCLUSTER and TOMLAB/MUL-
TIMIN achieve results close to 1 and with low variability among the best, mean, median and
worst results. Detailed variability graphs are presented for each solver in the on-line material.

f scaled = 1

7.10 Impact of missing bounds

As presented in Table 4, a significant number of test problems contain at least one vari-
able without lower or upper bounds. Figure 27 presents the fraction of problems solved for
problems grouped by the availability of bounds on their variables. Problems with bounds on
all their variables display a much higher percentage of success than the other two classes.
Better results are obtained for entirely unbounded problems compared to problems with only
lower bounds available. This is caused by the corresponding problem sizes (see Table 4).
CMA-ES, PSWARM, NOMAD and GLOBAL are found to be most sensitive to the absence of
bounds.

7.11 Refinement ability

The following experiment was designed to analyze the ability of solvers to obtain a highly
accurate solution. The solvers were provided an initial solution close to a global solution of

@ Springer



J Glob Optim (2013) 56:1247-1293 1283

1 Iw +IIIIIIIIIIIIIIIIII
O m®
X i+§+®+
- <oy " _
095 < @ @ uu+++++
AR
X X
09F x XUXU++ ]
’ X X “ N
o+
0.85 | % .
x O + + best
@ O mean
08 4 )
[0 median
« X worst
0.75 « ]
0.7 <
0.65 i
06 | I S [N IS (S S N S S —— —— S —_— _—__—
Jrzononon < = - <X EZOIC<CCK
EUJE—'OLUFEOOS<C%OOEE<OUJUJE
SE22Z2:s lWgSW a0 S guwsce <O
SE8FEg"<2z22C39_ 2335 0F0 <K
239 QJ)CDUJQ<098$Z<Z(",”)O
os o 20z g4 »n 5% 2 X
05S o E =2 T 3 <
| o O = S
o< = (2] Y o w
\_Io 2 <
as P = = N
39 o )
= X e
3 <
o a

Fig. 26 Scaled results for the best, mean, median and worst result among the 10 optimization instances after
2,500 function evaluations for each solver

the problem and a feasible space that was asymmetric with respect to the global solution x*.
In particular, the ranges of all variables were set to [—0.166 + x*, 0.033 + x*], allowing each
variable a range of 0.2, unless the original problem bounds were tighter, in which case the
latter were used.

Figure 28 presents the fraction of problems of different size that were solved to within
the optimality tolerance. It can be noted that for problems with one or two variables, most of
the solvers are able to find the global solution in over 90 % of the cases. For problems with
three to nine variables, only 8 solvers are able to solve more than 90 % of the cases. TOM-
LAB/GLCCLUSTER solves most problems involving ten to thirty variables, with just over
71 % of the problems, followed within 5 % by five other solvers. Performance for problems
with over thirty variables drops significantly for all solvers except for TOMLAB/OQNLP,
NEWUOA and BOBYQA, which solve around 50 % of the problems. Figs. 29, 30, 31, and 32
present similar refinement ability results for each problem class, while the on-line supplement
presents detailed graphs for each solver separately.

7.12 Solution of a test set unseen by developers
In an effort to encourage developers to improve their implementations, the above computa-

tional results were shared with developers over several rounds in the course of our study. The
developers of DAKOTA, IMFIL, SID-PSM, and the TOMLAB solvers improved their codes

@ Springer



J Glob Optim (2013) 56:1247-1293

1284

O only lower bounds
unbounded

+ bounded

X

09 + +

08

0.7 % x
0.6

041

031

02 O

05

VSvY

V3/V1OMva
YONM3N

T4
NY3L1Vd/V10Mvad
1034dIa/v.LoMva
HOYV3SNINA

04a
S1aM-SITOS/VLOMVYad
NOVASdOH
wvao1o

vOA904

1I49ONS

AavANON

NHVYMSd

S3-VYINO

NSd-dls

SON
dINOO/avINOL
0O1/aviINOL
H431SN10019/dvINOL
NINILTNN/GVTINOL

Fig. 27 Fraction of problems solved after 2,500 function evaluations for classes of problems by availability

of bounds on their variables

+ 1to 2 variables
O 3to 9 variables

10 to 30 variables

31 to 300 variables

X

1VSvY

1 MOVdSdOH
RLE

{1 Nd3L1Vd/V1OMvVa
1 V3/v1ioMva

4 1034Ia/v1oMva

1 NINLLTNW/avTNOL
1 voAd0d

4 S13IM-SIT0S/V1OoMvad
-1 HOYV3SNINAS
4104a

-1 AVINON

4 431SN710019/avINOL
1 dINOO/avINOL
17vao1o

1 WHVMSd

1 VONM3N

4 S3-VINO

1 0971/aviINOL

4 LI490NS
1WSd-dis

1 SO

1

09
08F O
0.7 |

06

05

041

03

02
01

o

Fig. 28 Fraction of problems solved from a near-optimal solution

pringer

as



1285

J Glob Optim (2013) 56:1247-1293

O 3to 9 variables

10 to 30 variables

31 to 300 variables

X

S ZANAN ZANN PN VA VA VAR VAN ¥ AN ¥ AN ¥ ¥ 2 AN Y A7 A YA ¥

091

0.8

0.7

06

05

041

03[

0.2

011

VSY

V3a/v10Mva
wvaono
10341d/v10oxva
AvINON
NYH3LLIVd/VLIOMVA
NHVYMSd

NSd-dis
HOYV3SNINA
431SN700719/dvINOL
dINDO/avINOL
NINILTNN/GVTNOL
vOAg04

S3-VINO
0971/aviNoL
1149ONS
S1IM-SITOS/V1OoMva
NOVdASdOH

SON

T4

YONM3IN

04a

Fig. 29 Fraction of convex smooth problems solved from a near-optimal solution

1 to 2 variables
O 3to 9 variables

+

10 to 30 variables

31 to 300 variables

X

O

i e e e S S
O O O

O

1

09

08

0.7

06

05

041

03[

VSY

voAg04d
d31SNT00719/dvINOL
dINDO/GvVINOL
NINILINN/GVYINOL
wvao1o

S3-VINO
091/aviINOL
1I49ONS
S1IM-SITOS/V1OMva
NH3ILLVd/V1OMYA
V3a/Nnv.10oMvd
10341a/v10Mva
ANOVdSdOH
NHVMSd

WNSd-ais

SON

RIEN]
HOYV3SNINA
YONM3IN

04a

AvNON

Fig. 30 Fraction of convex nonsmooth problems solved from a near-optimal solution

pringer

Qs



1 to 2 variables

O 3to 9 variables
10 to 30 variables
31 to 300 variables

+
X

J Glob Optim (2013) 56:1247-1293

5 FFFF ]

*
O

LS S o S S o
0O SX
OO

041
03
021

1286
0.1

VSv

NOVdSdOH

TIHNI
NY3LLVd/V1OMVA
Va/v10oMva
1034Ia/vV10Mva
NINILTNAN/GYINOL
S1IM-SITOS/VLOMVA
HOYV3ASNINA
AvINON
d31SN100719/avINOL
dINOO/avVINOL
vOAQ0d

wvao1o

NHVMSd

YONM3N

04a

S3-VINO
0971/aviINoOL
1I490ONS

NSd—-dIS

SON

o

1 to 2 variables
O 3to 9 variables
10 to 30 variables

+

ottt

Fig. 31 Fraction of nonconvex smooth problems solved from a near-optimal solution

09
08
0.7
06
05
041
03
021
0.1

MOVdSdOH

TN

04a

VSvY
H31SNT10019/avINOL
dINOO/avINOL
NINILTINN/GVINOL
vOoAg0d

wvao1o

S3-VINO
0971/avINOL
11490NS
S1IM-SIT0S/VLOMVA
NYH3LLVd/V1OMVYA
Va/nv1ioMva
10341a/v10Mvad
NHVMSd

NSd—-dlIS

SON

HOYVISNINA
VYONM3AN

AviNON

Fig. 32 Fraction of nonconvex nonsmooth problems solved from a near-optimal solution
pringer

as



J Glob Optim (2013) 56:1247-1293 1287

using feedback from our results. This raises the question whether this process may have
led to overtraining of the software on our test problem collection. To address this question,
we solved a set of an additional 502 problems that had never been seen by the developers.
These additional test problems were obtained from the original ones via a transformation
of variables that preserves smoothness and convexity characteristics but otherwise changes
the problems considerably, including the shape of the objective functions and location of all
local solutions. In particular, the following linear transformation was used:

X=x+1+tu'x)u,
t=(c—1)/u'u,

where u is arandomly generated vector with elements in [0, 1), and ¢ is the condition number
of the transformation. We chose ¢ = 2, so as to result in a variable space that is of similar
size to that of the original space. The results with and without the transformation were almost
identical.

8 Conclusions

While much work is still to be done, especially for the constrained case, significant progress
has been made on the algorithmic and theoretical aspects of derivative-free optimization
over the past two decades. Without doubt, the most important results from this activity are
the recent model-based algorithms as well as proofs of global convergence for direct and
model-based approaches.

A set of 22 leading software implementations of state-of-the-art derivative-free optimi-
zation algorithms were tested on a large collection of publicly available problems, whose
solutions were obtained using derivative-based and global optimization algorithms. Our com-
putational results show that attaining the best solutions even for small problems is a challenge
for most current derivative-free solvers. The solvers TOMLAB/MULTIMIN, TOMLAB/GLC-
CLUSTER, MCS and TOMLAB/LGO, on average, provide the best solutions among all the
solvers tested. However, computational results show that there is no single solver whose
performance dominates that of all others. In addition, all solvers provided the best solution
possible for at least some of the test problems. Although no subset of solvers suffices to solve
all problems, our results suggest that the combination of the commercial TOMLAB/MULTI -
MIN and TOMLAB/GLCCLUSTER with the free MCS and SNOBFIT is sufficient to provide
the best results in most cases. Problem dimensionality and nonsmoothness were found to rap-
idly increase the complexity of the search and decrease performance for all solvers. Finally,
from a starting point close to a solution, TOMLAB/OQNLP, NEWUOA and TOMLAB/MULTI -
MIN showed the fastest convergence towards the solution. Missing bounds on the variables
are found to affect significantly the performance of all solvers, particularly the stochastic
ones.

The issues of explicit or hidden constraints and noise in the objective function calcula-
tion have not been addressed in this paper. These issues are complex and warrant further
study on their own. In this direction, we performed experiments with applications for which
the objective function was a true black-box that was not available in algebraic form. The
results from these experiments suggest that the solvers identified as best herein indeed suf-
fice to address a variety of true black-box application problems. These results are detailed
elsewhere [13,26,43,120,128,139, 144].

@ Springer



1288 J Glob Optim (2013) 56:1247-1293

Acknowledgments This work was supported over a period of seven years by the Joint NSF/NIGMS Initia-
tive to Support Research in the Area of Mathematical Biology under NIH award GM072023, National Energy
Technology Laboratory’s on-going research in CO, capture under the RES contract DE-FE-0004000, and
the National Science Foundation under award CBET-1033661. The quality of this paper benefited signifi-
cantly from discussions with the authors of the software listed in Table 2. Their constructive comments and
suggestions on several drafts of this paper are far too many to be acknowledged individually.

References

1. Aarts, E.H.L., van Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial optimi-
zation problems. Phillips J. Res. 40, 193-226 (1985)

2. Abramson, M.A.: Pattern Search Algorithms for Mixed Variable General Constrained Optimization
Problems. PhD thesis, Department of Computational and Applied Mathematics, Rice University, Hous-
ton (2002, Aug)

3. Abramson, M.A.: NOMADm Version 4.5 User’s Guide. Air Force Institute of Technology, Wright-Patt-
erson AFB, OH (2007)

4. Abramson, M.A., Asaki, T.J., Dennis, J.E. Jr., O’Reilly, K.R., Pingel, R.L.: Quantitative object recon-
struction via Abel-based X-ray tomography and mixed variable optimization. SIAM J. Imaging Sci. 1,
322-342 (2008)

5. Abramson, M.A., Audet, C.: Convergence of mesh adaptive direct search to second-order stationary
points. SIAM J. Optim. 17, 606-609 (2006)

6. Abramson, M.A., Audet, C., Couture, G., Dennis, J.E. Jr., LeDigabel, S.: The NOMAD project. http://
www.gerad.ca/nomad/

7. Abramson, M.A., Audet, C., Dennis, J.E. Jr.: Filter pattern search algorithms for mixed variable con-
strained optimization problems. Pac. J. Optim. 3, 477-500 (2007)

8. Abramson, M.A., Audet, C., Dennis, J.E. Jr., Le Digabel, S.: OrthoMADS: a deterministic MADS
instance with orthogonal directions. SIAM J. Optim. 20, 948-966 (2009)

9. Audet, C.: Convergence results for generalized pattern search algorithms are tight. Optim. Eng. 5, 101-
122 (2004)

10. Audet, C., Béchard, V., Chaouki, J.: Spent potliner treatment process optimization using a MADS algo-
rithm. Optim. Eng. 9, 143-160 (2008)

11. Audet, C., Dennis, J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17, 188-217 (2006)

12. Audet, C., Dennis, J.E. Jr.: A progressive barrier for derivative-free nonlinear programming. SIAM J.
Optim. 20, 445-472 (2009)

13. Awasthi, S.: Molecular Docking by Derivative-Free Optimization Solver. Master’s thesis, Department
of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2008)

14. Barros, P.A. Jr., Kirby, M.R., Mavris, D.N.: Impact of sampling techniques selection on the creation of
response surface models. SAE Trans. J. Aerosp. 113, 1682-1693 (2004)

15. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing
problem. Comput. Optim. Appl. 21, 311-323 (2002)

16. Barton, R.R.: Metamodeling: A state of the art review. In: Proceedings of the 1994 Winter Simulation
Conference, pp. 237-244 (1994)

17. Bélisle, C.J., Romeijn, H.E., Smith, R.L.: Hit-and-run algorithms for generating multivariate distribu-
tions. Math. Oper. Res. 18, 255-266 (1993)

18. Bethke, J.D.: Genetic Algorithms as Function Optimizers. PhD thesis, Department of Computer and
Communication Sciences, University of Michigan, Ann Arbor (1980)

19. Bjorkman, M., Holmstrom, K.: Global optimization of costly nonconvex functions using radial basis
functions. Optim. Eng. 1, 373-397 (2000)

20. Boender, C.G.E., Rinnooy Kan, A.H.G., Timmer, G.T.: A stochastic method for global optimiza-
tion. Math. Program. 22, 125-140 (1982)

21. Boneh, A., Golan, A.: Constraints’ redundancy and feasible region boundedness by random feasible
point generator (RFPG). In: 3rd European Congress on Operations Research (EURO III), Amsterdam
(1979)

22. Booker, AJ., Dennis, J.E., Jr., Frank, P.D., Serafini, D.B., Torczon, V.J., Trosset, M.W.: A rigorous
framework for optimization of expensive functions by surrogates. In: ICASE Report, pp. 1-24 (1998)

23. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Serafini, D.B., Torczon, V.J., Trosset, M.W.: A rigorous
framework for optimization of expensive functions by surrogates. Struct. Optim. 17, 1-13 (1999)

@ Springer


http://www.gerad.ca/nomad/
http://www.gerad.ca/nomad/

J Glob Optim (2013) 56:1247-1293 1289

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Booker, A.J., Meckesheimer, M., Torng, T.: Reliability based design optimization using design
explorer. Optim. Eng. 5, 179-205 (2004)

Brent, R.P.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)
Chang, K.-F.: Modeling and Optimization of Polymerase Chain Reaction Using Derivative-Free Opti-
mization. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh
(2011)

Chiang, T., Chow, Y.: A limit theorem for a class of inhomogeneous Markov processes. Ann. Pro-
bab. 17, 1483-1502 (1989)

COIN-OR Project. Derivative Free Optimization. http://projects.coin-or.org/Dfo

COIN-OR Project. IPOPT 2.3.x A software package for large-scale nonlinear optimization. http:/
www.coin-or.org/Ipopt/ipopt-fortran.html

Conn, A.R., Gould, N., Lescrenier, M., Toint, Ph.L.: Performance of a multifrontal scheme for partially
separable optimization. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical
Analysis, pp. 79-96. Kluwer, Dordrecht (1994)

Conn, A.R., Scheinberg, K., Toint, PL. : On the convergence of derivative-free methods for uncon-
strained optimization. In: Buhmann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization,
Tribute to M. J. D. Powell, pp. 83—-108. Cambridge University Press, Cambridge (1996)

Conn, A.R., Scheinberg, K., Toint, P.L.: Recent progress in unconstrained nonlinear optimization without
derivatives. Math. Program. 79, 397414 (1997)

Conn, A.R., Scheinberg, K., Toint, PL.: A derivative free optimization algorithm in practice. In: Pro-
ceedings of ATAA St Louis Conference, pp. 1-11 (1998)

Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region
algorithms to first and second order critical points. SIAM J. Optim. 20, 387-415 (2009)

Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. SIAM, Phila-
delphia (2009)

Cox, D.D., John, S.: SDO: A statistical method for global optimization. In: Multidisciplinary Design
Optimization (Hampton, VA, 1995), pp. 315-329. SIAM, Philadelphia (1997)

Csendes, T., Pél, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization method revisited. Optim.
Lett. 2, 445-454 (2008)

Custddio, A.L., Dennis, J.E. Jr., Vicente, L.N.: Using simplex gradients of nonsmooth functions in direct
search methods. IMA J. Numer. Anal. 28, 770-784 (2008)

Custddio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct
search. Comput. Optim. Appl. (to appear)

Custddio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM
J. Optim. 18, 537-555 (2007)

Custddio, A.L., Vicente, L.N.: SID-PSM: A Pattern Search Method Guided by Simplex Derivatives for
Use in Derivative-Free Optimization. Departamento de Matematica, Universidade de Coimbra, Coimbra
(2008)

Deming, S.N., Parker, L.R. Jr., Denton, M.B.: A review of simplex optimization in analytical chemis-
try. Crit. Rev. Anal. Chem. 7, 187-202 (1974)

Desai, R.: A Comparison of Algorithms for Optimizing the Omega Function. Master’s thesis, Department
of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2010)

Eberhart, R..Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th
International Symposium on Micro Machine and Human Science, Nagoya, pp. 39-43 (1995)

Eldred, M.S., Adams, B.M., Gay, D.M., Swiler, L.P., Haskell, K., Bohnhoff, W.J., Eddy, J.P., Hart, W.E.,
Watson, J-P, Hough, P.D., Kolda, T.G., Williams, P.J., Martinez-Canales, M.L., DAKOTA, A.: Multi-
level Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 4.2 User’s Manual. Sandia National Laboratories,
Albuquerque (2008)

Fan, S.S., Zahara, E.: A hybrid simplex search and particle swarm optimization for unconstrained opti-
mization. Eur. J. Oper. Res. 181, 527-548 (2007)

Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597—
608 (2006)

Fowler, K.R., Reese, J.P., Kees, C.E., Dennis, J.E. Jr., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J.,
Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: A
comparison of derivative-free optimization methods for groundwater supply and hydraulic capture com-
munity problems. Adv. Water Resour. 31, 743-757 (2008)

Gablonsky, J.M.: Modifications of the DIRECT Algorithm. PhD thesis, Department of Mathematics,
North Carolina State University, Raleigh (2001)

@ Springer


http://projects.coin-or.org/Dfo
http://www.coin-or.org/Ipopt/ipopt-fortran.html
http://www.coin-or.org/Ipopt/ipopt-fortran.html

1290 J Glob Optim (2013) 56:1247-1293

50. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many local
minima. SIAM J. Optim. §, 269-285 (1995)

51. GLOBAL Library. http://www.gamsworld.org/global/globallib.htm

52. Gray, G., Kolda, T., Sale, K., Young, M.: Optimizing an empirical scoring function for transmembrane
protein structure determination. INFORMS J. Comput. 16, 406418 (2004)

53. Gutmann, H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201—
227 (2001)

54. Han, J., Kokkolaras, M., Papalambros, P.Y.: Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci.
Technol. 5, 041014 (2008)

55. Hansen, N.: The CMA Evolution Strategy: A tutorial. http://www.Iri.fr/hansen/cmaesintro.html

56. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I,
Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances on Estimation of Distribu-
tion Algorithms, pp. 75-102. Springer, Berlin (2006)

57. Hayes, R.E., Bertrand, F.H., Audet, C., Kolaczkowski, S.T.: Catalytic combustion kinetics: using a direct
search algorithm to evaluate kinetic parameters from light-off curves. Can. J. Chem. Eng. 81, 1192—
1199 (2003)

58. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor (1975)

59. Holmstrom, K.: Private Communication (2009)

60. Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s Guide for TOMLAB 7. Tomlab Optimization. http://
tomopt.com

61. Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/CGO. Tomlab Optimization
(2007). http://tomopt.com

62. Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/OQNLP. Tomlab Optimization
(2007). http://tomopt.com

63. Holmstrom, K., Quttineh, N.-H., Edvall, M.M.: An adaptive radial basis algorithm (ARBF) for expensive
black-box mixed-integer constrained global optimization. Optim. Eng. 9, 311-339 (2008)

64. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput.
Mach. 8, 212-219 (1961)

65. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331—
355 (1999)

66. Huyer, W., Neumaier, A.: SNOBFIT—Stable noisy optimization by branch and fit. ACM Trans. Math.
Softw. 35, 1-25 (2008)

67. Hvattum, L.M., Glover, F.: Finding local optima of high-dimensional functions using direct search
methods. Eur. J. Oper. Res. 195, 31-45 (2009)

68. Ingber, L.: Adaptive Simulated Annealing (ASA). http://www.ingber.com/#ASA

69. Jarvi, T.: A Random Search Optimizer with an Application to a Max—Min Problem. Technical report,
Pulications of the Institute for Applied Mathematics, University of Turku (1973)

70. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Op-
tim. 21, 345-383 (2001)

71. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Ency-
clopedia of Optimization, vol. 1, pp. 431-440. Kluwer, Boston (2001)

72. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz con-
stant. J. Optim. Theory Appl. 79, 157-181 (1993)

73. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions.
J. Glob. Optim. 13, 455-492 (1998)

74. Kelley, C.T.: Users Guide for IMFIL version 1.0. http://www4.ncsu.edu/ctk/imfil.html

75. Kelley, C.T.: Detection and remediation of stagnation in the Nelder—Mead algorithm using a sufficient
decrease condition. SIAM J. Optim. 10, 43-55 (1999)

76. Kelley, C.T.: Iterative Methods for Optimization. STAM, Philadelphia (1999)

77. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Con-
ference on Neural Networks, Piscataway, pp. 1942—1948 (1995)

78. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671-
680 (1983)

79. Kolda, T.G., Lewis, R.M., Torczon, V.J.: Optimization by direct search: new perspectives on some
classical and modern methods. STAM Rev. 45, 385-482 (2003)

80. Kolda, T.G., Torczon, V.J.: On the convergence of asynchronous parallel pattern search. SIAM J.
Optim. 14, 939-964 (2004)

81. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, PE.: Convergence properties of the Nelder—-Mead
simplex method in low dimensions. SIAM J. Optim. 9, 112-147 (1998)

@ Springer


http://www.gamsworld.org/global/globallib.htm
http://www.lri.fr/hansen/cmaesintro.html
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://www.ingber.com/#ASA
http://www4.ncsu.edu/ctk/imfil.html

J Glob Optim (2013) 56:1247-1293 1291

82.
83.

84.

85.

86.

87.
88.

89.

90.

91.

92.

93.
94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.

107.

108.

109.

110.

111.

LeDigabel, S.: NOMAD User Guide Version 3.3. Technical report, Les Cahiers du GERAD (2009)
Lewis, R.M., Torczon, V.J.: Pattern search algorithms for bound constrained minimization. SIAM J.
Optim. 9, 1082-1099 (1999)

Lewis, R.M., Torczon, V.J.: Pattern search algorithms for linearly constrained minimization. SIAM J.
Optim. 10, 917-941 (2000)

Lewis, R.M., Torczon, V.J.: A globally convergent augmented lagrangian pattern search algorithm for
optimization with general constraints and simple bounds. SIAM J. Optim. 12, 1075-1089 (2002)
Liepins, G.E., Hilliard, M.R.: Genetic algorithms: foundations and applications. Ann. Oper. Res. 21,
31-58 (1989)

Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657-668 (2009)
Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free methods for unconstrained
minimization. SIAM J. Optim. 13, 97-116 (2002)

Luksan, L., VI¢ek, J.: Test Problems for Nonsmooth Unconstrained and Linearly Constrained Optimi-
zation. Technical report, Institute of Computer Science, Academy of Sciences of the Czech Republic
(2000). http://www3.cs.cas.cz/ics/reports/v798-00.ps

Marsden, A.L., Feinstein, J.A., Taylor, C.A.: A computational framework for derivative-free optimiza-
tion of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197, 1890-1905 (2008)
Marsden, A.L., Wang, M., Dennis, J.E. Jr., Moin, P.: Optimal aeroacustic shape design using the surrogate
management framework. Optim. Eng. 5, 235-262 (2004)

Marsden, A.L., Wang, M., Dennis, J.E. Jr., Moin, P.: Trailing-edge noise reduction using derivative-free
optimization and large-eddy simulation. J. Fluid Mech. §, 235-262 (2007)

Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246-1266 (1967)

McKinnon, K.I.M.: Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM
J. Optim. 9, 148-158 (1998)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calcula-
tions by fast computing machines. J. Chem. Phys. 21, 1087-1092 (1953)

Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty, J.B.: Comparison of public-domain software for
black box global optimization. Optim. Methods Softw. 13, 203-226 (2000)

Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172-191
(2009)

Mugunthan, P., Shoemaker, C.A., Regis, R.G.: Comparison of function approximation, heuristic, and
derivative-based methods for automatic calibration of computationally expensive groundwater bioreme-
diation models. Water Resour. Res. 41, W11427 (2005)

Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308-313 (1965)
Nesterov, Y.: Gradient methods for minimizing composite objective function. CORE Discussion Paper
2007/76 (2007)

Neumaier, A.: MCS: Global Optimization by Multilevel Coordinate Search. http://www.mat.univie.ac.
at/neum/software/mcs/

Neumaier, A., Shcherbina, O., Huyer, W., Vinkd, T.: A comparison of complete global optimization
solvers. Math. Program. 103, 335-356 (2005)

Oeuvray, R.: Trust-Region Methods Based on Radial Basis Functions with Application to Biomedical
Imaging. PhD thesis, Institute of Mathematics, Swiss Federal Institute of Technology, Lausanne (2005,
March)

Orosz, J.E., Jacobson, S.H.: Finite-time performance analysis of static simulated annealing algo-
rithms. Comput. Optim. Appl. 21, 21-53 (2002)

Pintér, J.: Homepage of Pintér Consulting Services. http://www.pinterconsulting.com/

Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization. Algorithms, Imple-
mentations and Applications. Nonconvex Optimization and its Applications. Kluwer, Dordrecht (1995)
Pintér, J.D., Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/LGO. Tomlab
Optimization (2006). http://tomopt.com

Plantenga, T.D.: HOPSPACK 2.0 User Manual. Technical Report SAND2009-6265, Sandia National
Laboratories, Albuquerque (2009)

Powell, M.J.D. A direct search optimization method that models the objective and constraint functions
by linear interpolation. In: Gomez, S., Hennart, J-P. (eds.) Advances in Optimization and Numerical
Analysis, pp. 51-67. Kluwer, Dordrecht (1994)

Powell, M.J.D.: A direct search optimization method that models the objective by quadratic interpolation.
In: Presentation at the S5th Stockholm Optimization Days (1994)

Powell, M.J.D.: Recent Research at Cambridge on Radial Basis Functions. Technical report, Department
of Applied Mathematics and Theoretical Physics, University of Cambridge (1998)

@ Springer


http://www3.cs.cas.cz/ics/reports/v798-00.ps
http://www.mat.univie.ac.at/neum/software/mcs/
http://www.mat.univie.ac.at/neum/software/mcs/
http://www.pinterconsulting.com/
http://tomopt.com

1292 J Glob Optim (2013) 56:1247-1293

112. Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Pro-
gram. 92, 555-582 (2002)

113. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo,
G., Roma, M. Large-Scale Nonlinear Optimization, pp. 255-297. Springer, New York (2006)

114. Powell, M.J.D.: Developments of NEWUOA for minimization without derivatives. IMA J. Numer.
Anal. 28, 649-664 (2008)

115. Powell, M.J.D.: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives.
Technical report, Department of Applied Mathematics and Theoretical Physics, University of Cambridge
(2009)

116. Princeton Library. http://www.gamsworld.org/performance/princetonlib/princetonlib.htm

117. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using
radial basis functions. J. Glob. Optim. 31, 153-171 (2005)

118. Regis, R.G., Shoemaker, C.A.: Improved strategies for radial basis function methods for global optimi-
zation. J. Glob. Optim. 37, 113-135 (2007)

119. Richtarik, P.: Improved algorithms for convex minimization in relative scale. SIAM J. Optim. (2010, to
appear). http://www.optimization-online.org/DB_FILE/2009/02/2226.pdf

120. Rios, L.M.: Algorithms for Derivative-Free Optimization. PhD thesis, Department of Industrial and
Enterprise Systems Engineering, University of Illinois, Urbana (2009, May)

121. Romeo, F., Sangiovanni-Vincentelli, A.: A theoretical framework for simulated annealing. Algorithmi-
ca 6, 302-345 (1991)

122. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat.
Sci. 4, 409-423 (1989)

123. Sahinidis, N.V., Tawarmalani, M.: BARON 7.5: Global Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual (2005)

124. Sandia National Laboratories: The Coliny Project. https://software.sandia.gov/trac/acro/wiki/Overview/
Projects

125. Scheinberg, K.: Manual for Fortran Software Package DFO v2.0 (2003)

126. Schonlau, M.: Computer Experiments and Global Optimization. PhD thesis, Department of Statistics,
University of Waterloo, Waterloo (1997)

127. Serafini, D.B.: A Framework for Managing Models in Nonlinear Optimization of Computationally
Expensive Functions. PhD thesis, Department of Computational and Applied Mathematics, Rice Uni-
versity, Houston (1998, Nov)

128. Shah, S.B., Sahinidis, N.V.: SAS-Pro: Simultaneous residue assignment and structure superposition for
protein structure alignment. PLoS ONE 7(5), €37493 (2012)

129. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer.
Anal. 9, 379-388 (1972)

130. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded
regions. Oper. Res. 32, 1296-1308 (1984)

131. S¢ndergaard, J.: Optimization Using Surrogate Models—by the Space Mapping Technique. PhD thesis,
Technical University of Denmark, Department of Mathematical Modelling, Lingby (2003)

132. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application for simplex designs in optimisation
and evolutionary operation. Technometrics 4, 441-461 (1962)

133. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103, 225-249 (2005)

134. Torczon, V.J.: On the convergence of multidirectional search algorithms. SIAM J. Optim. 1, 123—
145 (1991)

135. Torczon, V.J.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1-25 (1997)

136. Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269—
288 (1999)

137. Vaz, A.LE.: PSwarm Home Page. http://www.norg.uminho.pt/aivaz/pswarm/

138. Vaz, A.LE, Vicente, L.N.: A particle swarm pattern search method for bound constrained global opti-
mization. J. Glob. Optim. 39, 197-219 (2007)

139. Wang, H.: Application of Derivative-Free Algorithms in Powder Diffraction. Master’s thesis, Department
of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2011)

140. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: Optimization by radial basis function interpolation
in trust-regions. SIAM J. Sci. Comput. 30, 3197-3219 (2008)

141. Winfield, D.: Function and Functional Optimization by Interpolation in Data Tables. PhD thesis, Harvard
University, Cambridge (1969)

@ Springer


http://www.gamsworld.org/performance/princetonlib/princetonlib.htm
http://www.optimization-online.org/DB_FILE/2009/02/2226.pdf
https://software.sandia.gov/trac/acro/wiki/Overview/Projects
https://software.sandia.gov/trac/acro/wiki/Overview/Projects
http://www.norg.uminho.pt/aivaz/pswarm/

J Glob Optim (2013) 56:1247-1293 1293

142. Winslow, T.A., Trew, R.J., Gilmore, P., Kelley, C.T.: Simulated performance optimization of gaas mesfet
amplifiers. In: IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices
and Circuits, Piscataway, pp. 393-402 (1991)

143. Zhao, Z., Meza, J.C., Van Hove, M.: Using pattern search methods for surface structure determination
of nanomaterials. J. Phys. Condens. Matter 18, 8693-8706 (2006)

144. Zheng, Y.: Pairs Trading and Portfolio Optimization. Master’s thesis, Department of Chemical Engi-
neering, Carnegie Mellon University, Pittsburgh (2011)

@ Springer



	Derivative-free optimization: a review of algorithms and comparison of software implementations
	Abstract
	1 Introduction
	2 Local search methods
	2.1 Direct local search methods
	2.1.1 Nelder--Mead simplex algorithm
	2.1.2 Generalized pattern search (GPS) and generating set search (GSS) methods

	2.2 Local model-based search algorithms
	2.2.1 Trust-region methods
	2.2.2 Implicit filtering


	3 Global search algorithms
	3.1 Deterministic global search algorithms
	3.1.1 Lipschitzian-based partitioning techniques
	3.1.2 Multilevel coordinate search (MCS)

	3.2 Global model-based search algorithms
	3.2.1 Response surface methods (RSMs)
	3.2.2 Surrogate management framework (SMF)
	3.2.3 Optimization by branch-and-fit

	3.3 Stochastic global search algorithms
	3.3.1 Hit-and-run algorithms
	3.3.2 Simulated annealing
	3.3.3 Genetic algorithms
	3.3.4 Particle swarm algorithms


	4 Historical overview and some algorithmic insights
	4.1 Algorithmic insights

	5 Derivative-free optimization software
	5.1 ASA
	5.2 BOBYQA
	5.3 CMA-ES
	5.4 DAKOTA solvers
	5.5 DFO
	5.6 FMINSEARCH
	5.7 GLOBAL
	5.8 HOPSPACK
	5.9 IMFIL
	5.10 MCS
	5.11 NEWUOA
	5.12 NOMAD
	5.13 PSWARM
	5.14 SID-PSM
	5.15 SNOBFIT
	5.16 TOMLAB solvers
	5.17 Additional solvers considered

	6 Illustrative example: came16
	7 Computational comparisons
	7.1 Test problems
	7.2 Experimental setup and basis of solver comparisons
	7.3 Algorithmic settings
	7.4 Computational results for convex problems
	7.5 Computational results with nonconvex problems
	7.6 Improvement from starting point
	7.7 Minimal set of solvers
	7.8 Impact of problem size
	7.9 Variance of the results
	7.10 Impact of missing bounds
	7.11 Refinement ability
	7.12 Solution of a test set unseen by developers

	8 Conclusions
	Acknowledgments
	References


