
USER’S GUIDE FOR TOMLAB /OQNLP1

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4

March 5, 2007

1More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.
2Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Väster̊as,

Sweden, kenneth.holmstrom@mdh.se.
3Tomlab Optimization AB, Väster̊as Technology Park, Trefasgatan 4, SE-721 30 Väster̊as, Sweden, anders@tomopt.com.
4Tomlab Optimization Inc., 855 Beech St #121, San Diego, CA, USA, medvall@tomopt.com.

1

http://tomopt.com
mailto:tomlab@tomopt.com
mailto:kenneth.holmstrom@mdh.se
mailto:anders@tomopt.com
mailto:medvall@tomopt.com

Contents

Contents 2

1 Introduction 3

1.1 Overview . 3

1.2 Contents of this Manual . 3

1.3 More information . 3

1.4 Prerequisites . 3

2 Using the Matlab Interface 4

3 Setting OQNLP Options 4

3.1 Setting options using the OQNLP.options structure . 4

4 TOMLAB /OQNLP Solver Reference 6

4.1 oqnlpTL . 6

4.2 msnlpTL . 9

4.3 lsgrg2TL . 11

4.4 OQNLP and MSNLP options . 13

4.5 LSGRG2 options . 19

4.6 LSGRG2 printing . 23

5 Algorithm 24

5.1 Multistart overview . 24

5.2 Pure and smart random drivers . 25

2

1 Introduction

1.1 Overview

Welcome to the TOMLAB /OQNLP User’s Guide. The package includes the OQNLP solvers from Optimal
Methods Inc. and an interface to The MathWorks’ MATLAB. The TOMLAB /OQNLP package includes OQNLP,
MSNLP and LSGRG2, while TOMLAB /MSNLP includes MSNLP and LSGRG2.

TOMLAB /OQNLP is a multistart heuristic algorithm designed to find global optima of smooth constrained
nonlinear programs (NLPs) and mixed-integer nonlinear programs (MINLPs).

TOMLAB /MSNLP is also a multistart heuristic algorithm designed to find global optima of smooth constrained
nonlinear programs (NLPs). The latest release support integers (MINLPs).

LSGRG2 can be called directly. The solver does not find global optima but only local solutions, which may be
sufficient for many user cases. Up to 10,000 variables and constraints are supported.

The multistart feature calls an NLP solver with a different set of initial values and return the feasible solutions
as well as the optimal point. The starting points are calculated from scatter search algorithm, see http://www.

opttek.com for additional information. The user may also choose to use uniformly distributed initial values.
Neither of the two options guarantee that a global optimum is obtained, however the likelihood is high.

The main advantage with OQNLP/MSNLP for smooth problems is that good local solutions are easily obtained,
and that integer variables are handled.

1.2 Contents of this Manual

• Section 1 provides a basic overview of the TOMLAB /OQNLP and TOMLAB /MSNLP solver packages.

• Section 2 provides an overview of the Matlab interfaces to OQNLP and MSNLP (LSGRG2).

• Section 3 describes how to set OQNLP and MSNLP (LSGRG2) solver options from Matlab.

• Section 4 gives detailed information about the interface routines oqnlpTL, msnlpTL and lsgrg2TL.

1.3 More information

Please visit the following links for more information:

• http://tomopt.com/tomlab/products/oqnlp/

• http://www.opttek.com

1.4 Prerequisites

In this manual we assume that the user is familiar with global optimization and nonlinear programming, setting up
problems in TOMLAB (in particular constrained nonlinear (con) problems) and the Matlab language in general.

3

http://www.opttek.com
http://www.opttek.com
http://tomopt.com/tomlab/products/oqnlp/
http://www.opttek.com

2 Using the Matlab Interface

The OQNLP and MSNLP (LSGRG2) solvers are accessed via the tomRun driver routine, which calls the appro-
priate interface routine (for example oqnlpTL). The solvers themselves are located in a set of MEX files: oqnlp,
msnlp and lsgrg2.

Table 1: The interface routines.

Function Description Section Page
oqnlpTL The interface routine called by the TOMLAB driver routine tomRun.

This routine then calls the MEX file oqnlp

4.1 6

oqnlp g Interface routine called by OQNLP when an objective gradient is not
given and integer variables are included.

oqnlp dc Interface routine called by OQNLP when a Jacobian is not given and
integer variables are included.

oqnlp gdc Interface routine called by OQNLP when a gradient or Jacobian are
not given using the simAssign format and integer variables are in-
cluded.

msnlpTL The interface routine called by the TOMLAB driver routine tomRun.
This routine then calls the MEX file msnlp

4.2 9

lsgrg2TL The interface routine called by the TOMLAB driver routine tomRun.
This routine then calls the MEX file lsgrg2

4.3 11

3 Setting OQNLP Options

All OQNLP, MSNLP and LSGRG2 control parameters are possible to set from Matlab.

3.1 Setting options using the OQNLP.options structure

The parameters can be set as subfields in the Prob.OQNLP.options structure for TOMLAB /OQNLP and TOMLAB /MSNLP.
If using the LSGRG2 solver, Prob.LSGRG2.options applies. The following example shows how to set a limit for
the maximum number of iterations.

Prob = conAssign(...) % Setup problem, see help conAssign for more information

Prob.OQNLP.options.ITERATION_LIMIT = 2000; % Setting maximum number of iterations

The maximum number of iterations can also be done through the TOMLAB parameter MaxIter:

4

Prob.optParam.MaxIter = 200;

In the cases where a solver specific parameter has a corresponding TOMLAB general parameter, the latter is used
only if the user has not given the solver specific parameter.

A complete description of the available parameters can be found in Section 4.4.

5

4 TOMLAB /OQNLP Solver Reference

A detailed description of the TOMLAB /OQNLP solver interface is given below. Also see the M-file help for
oqnlpTL and msnlpTL.

4.1 oqnlpTL

Purpose
Solves global constrained nonlinear mixed-integer problems.

OQNLP solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(1)

where x, xL, xU ∈ Rn, A ∈ Rm1×n, bL, bU ∈ Rm1 and c(x), cL, cU ∈ Rm2 .
The variables x ∈ I, the index subset of 1, ..., n, are restricted to be integers.

Calling Syntax
Prob = minlpAssign(...);
Result = tomRun(’oqnlp’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.
x L, x U Bounds on variables.
b L, b U Bounds on linear constraints.
c L, c U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b L(k) == b U(k).

PriLevOpt Print level in MEX interface.

LargeScale Flag telling whether to treat the problem as sparse (1) or dense. If set to 1,
the user should also provide a sparse 0-1 matrix in Prob.ConsPattern giving
the nonzero pattern.

MIP Structure with fields defining the integer properties of the problem. The fol-
lowing fields are used:

IntVars Vector designating which variables are restricted to integer values. This field
is interpreted differently depending on the length.
If length(IntVars) = length(x), it is interpreted as a zero-one vector where all
non-zero elements indicate integer values only for the corresponding variable.

6

Prob Problem description structure. The following fields are used:, continued

A length less than the problem dimension indicates that IntVars is a vector of
indices for the integer variables, for example [1 2 3 6 7 12].

OQNLP Structure with special fields for the OQNLP solver:

options Structure array with options.
morereal Number of extra REAL workspace locations. Set to <0 for problem dependent

default strategy.
moreint Number of extra INTEGER workspace locations. Set to <0 for problem de-

pendent default strategy.

Description of Outputs

Result Structure with result from optimization. The following fields are set:

f k Function value at optimum.
g k Gradient of the function.

x k Solution vector.
x 0 Initial solution vector.

c k Nonlinear constraint residuals.
cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrange multipliers (for bounds + dual solution vector).
ExitFlag Exit status from OQNLP (TOMLAB standard).
Inform OQNLP information parameter.

< 0 = Setup Error.
0 = Status not set.
1 = Optimal solution found.
2 = Fractional change in objective too small.
3 = All remedies failed.
4 = Too many iterations.
5 = Problem is unbounded.
6-10 = Problem infeasible.
11-38 = Runtime failure.
39 = Termination by user.
40 = Jacobian overflow.

7

Result Structure with result from optimization. The following fields are set:, continued

41 = OPTQUEST Error.
42 = Time limit exceeded.
43 = Feasible solution found.
Other = Unknown return code.

rc Reduced costs. If ninf=0, last m == -v k.
Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.
QP.B Basis vector in TOMLAB QP standard.

Solver Name of the solver (OQNLP).
SolverAlgorithm Description of the solver.

8

4.2 msnlpTL

Purpose
Solves global constrained nonlinear problems.

MSNLP solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(2)

where x, xL, xU ∈ Rn, A ∈ Rm1×n, bL, bU ∈ Rm1 and c(x), cL, cU ∈ Rm2 .

Calling Syntax
Prob = conAssign(...);
Result = tomRun(’msnlp’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.
x L, x U Bounds on variables.
b L, b U Bounds on linear constraints.
c L, c U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b L(k) == b U(k).

PriLevOpt Print level in MEX interface.

LargeScale Flag telling whether to treat the problem as sparse (1) or dense. If set to 1,
the user should also provide a sparse 0-1 matrix in Prob.ConsPattern giving
the nonzero pattern.

MIP Structure with fields defining the integer properties of the problem. The fol-
lowing fields are used:

OQNLP Structure with special fields for the MSNLP solver:

options Structure array with options.
morereal Number of extra REAL workspace locations. Set to <0 for problem dependent

default strategy.
moreint Number of extra INTEGER workspace locations. Set to <0 for problem de-

pendent default strategy.

Description of Outputs

9

Result Structure with result from optimization. The following fields are set:

f k Function value at optimum.
g k Gradient of the function.

x k Solution vector.
x 0 Initial solution vector.

c k Nonlinear constraint residuals.
cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrange multipliers (for bounds + dual solution vector).
ExitFlag Exit status from MSNLP (TOMLAB standard).
Inform MSNLP information parameter.

< 0 = Setup Error.
0 = Status not set.
1 = Optimal solution found.
2 = Fractional change in objective too small.
3 = All remedies failed.
4 = Too many iterations.
5 = Problem is unbounded.
6-10 = Problem infeasible.
11-38 = Runtime failure.
39 = Termination by user.
40 = Jacobian overflow.
41 = OPTQUEST Error.
42 = Time limit exceeded.
43 = Feasible solution found.
Other = Unknown return code.

rc Reduced costs. If ninf=0, last m == -v k.
Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.
QP.B Basis vector in TOMLAB QP standard.

Solver Name of the solver (MSNLP).
SolverAlgorithm Description of the solver.

10

4.3 lsgrg2TL

Purpose
Solves constrained nonlinear problems.

LSGRG2 solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(3)

where x, xL, xU ∈ Rn, A ∈ Rm1×n, bL, bU ∈ Rm1 and c(x), cL, cU ∈ Rm2 .

Calling Syntax
Prob = conAssign(...);
Result = tomRun(’lsgrg2’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.
x L, x U Bounds on variables.
b L, b U Bounds on linear constraints.
c L, c U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b L(k) == b U(k).

PriLevOpt Print level in optimizer and MEX interface. Set Prob.LSGRG2.options.IPR to
set optimizer print level separately.

LargeScale Flag telling whether to treat the problem as sparse (1) or dense. If set to 1,
the user should also provide a sparse 0-1 matrix in Prob.ConsPattern giving
the nonzero pattern.

MaxCPU Maximum allowed time in seconds for the LSGRG2 run. It is also possible
to set this through the Prob.LSGRG2.options.MAXTIME parameter, in which
case Prob.MaxCPU is ignored. LSGRG2’s default value for MAXTIME is 1000
seconds.

optParam.MaxIterMaximum number of iterations. Default is 10000.

LSGRG2 Structure with special fields for the LSGRG2 solver:

options Structure array with options. See the TOMLAB /OQNLP User’s Guide for
instructions and examples.

PrintFile Name of file to receive the LSGRG2 iteration and results log. Independent of
PriLevOpt.

11

Description of Outputs

Result Structure with result from optimization. The following fields are set:

f k Function value at optimum.
g k Gradient of the function.

x k Solution vector.
x 0 Initial solution vector.

c k Nonlinear constraint residuals.
cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrange multipliers (for bounds + dual solution vector).
ExitFlag Exit status from LSGRG2 (TOMLAB standard).
Inform LSGRG2 information parameter.

< 0 = Setup Error.
0 = Status not set.
1 = Kuhn-Tucker conditions satisfied.
2 = Fractional change in objective too small.
3 = All remedies failed.
4 = Too many iterations.
5 = Problem is unbounded.
6-10 = Problem infeasible.
11-38 = Runtime failure.
39 = Termination by user.
40 = Jacobian overflow.
41 = Engine Error.
42 = Time limit exceeded.
Other = Unknown return code.

rc Reduced costs. If ninf=0, last m == -v k.
Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.
QP.B Basis vector in TOMLAB QP standard.

Solver Name of the solver (LSGRG2).
SolverAlgorithm Description of the solver.

12

4.4 OQNLP and MSNLP options

The following table shows all the options that the user can set for the OQNLP and MSNLP solvers. The LSGRG2
solver options are in Table 9. Observe that parameters which mention OptQuest are only available when using
OQNLP (The OptQuest engine is part of OQNLP). All parameters should be set in Prob.OQNLP.options

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:

Option Description Default

BASIN DECREASE FACTOR This value must be between 0 and 1. If DYNAMIC DISTANCE FILTER
is set to 1, the MAXDIST value associated with any local solution is re-
duced by (1-BASIN DECREASE FACTOR) if MERIT WAITCYCLE
consecutive trial points have distance from the solution less than
MAXDIST.

0.2

BASIN OVERLAP FIX A value of 1 turns on logic which checks the MAXDIST values of all pairs
of local solutions, and reduces any pair of MAXDIST values if their sum
is greater then the distance between the 2 solutions. This ensures that
the spherical models of their basins of attracting do not overlap. A value
of 0 turns off this logic. Turning it off can reduce the number of NLP
solver calls, but can also cause OQNLP to miss the global solution.

1

DISTANCE FACTOR If the distance between an OptQuest trial point and any local solution
found previously is less then DISTANCE FACTOR ∗ MAXDIST, the
NLP solver is not started from that trial point. MAXDIST is the largest
distance ever traveled to get to that local solution. Increasing DIS-
TANCE FACTOR leads to fewer solver calls and risks finding a worse
solution. Decreasing it leads to more solver calls and possibly a better
solution.

1.0

DYNAMIC DISTANCE
FILTER

A value of 1 turns on logic which reduces the value of MAXDIST
(described under the DISTANCE FILTER keyword) for a local solu-
tion if MERIT WAITCYCLE consecutive trial points have a distance
from that solution less than MAXDIST. MAXDIST is multiplied by
(1-BASIN REDUCTION FACTOR). A value of 0 turns off this logic.
Turning it off can decrease the number of NLP solver calls, but can also
lead to a worse final solution.

1

DYNAMIC MERIT FILTER A value of 1 turns on logic which dynamically varies the pa-
rameters which increases the merit filter threshold, THRESH-
OLD INCREASE FACTOR. If MERIT WAITCYCLE consecutive trial
points have been rejected by the merit filter, this value is replaced by
max(THRESHOLD INCREASE FACTOR, val), where val is the value
of THRESHOLD INCREASE FACTOR which causes the merit filter to
just accept the best of the previous MERIT WAITCYCLE trial points.
A value of 0 turns off this logic. Turning it off can reduce NLP solver
calls, but may lead to a worse final solution.

1

13

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:, continued

Option Description Default

FEASIBILITY TOLERANCE This tolerance is used to check each point returned by an NLP solver
for feasibility. If the largest absolute infeasibility at the point is larger
than this tolerance, the point is classified infeasible. This test is made
because points returned by NLP solvers may occasionally be infeasible
despite feasible status codes. Some NLP solvers use internal scaling
before testing for feasibility. The unscaled problem may be infeasible,
while the scaled one is feasible. If this occurs, increasing this tolerance
(to 1.e-2 or larger) often eliminates the problem.

1.e-4

FEASIBILITY MODE If this option is set to 1 the system focuses on finding a feasible point,
stopping after the first NLP solver call which finds such a point. If set to
0, the system tries to find the global optimum of the objective function
subject to the constraints.

0

INFBND This value (its negative) is given to OptQuest as the upper (lower) bound
for any variable with no upper and lower bound. However, the original
bounds are given to the local solver, so it can produce solutions not
limited by this artificial bound.

1.e5

OptQuest must have finite upper and lower bounds for each variable.
If INFBND (or any of the user-supplied bounds) is much larger than
any component of the optimal solution, OptQuest will be less efficient
because it is searching over a region that is much larger than needed.
Hence the user is advised to try to provide realistic values for all upper
and lower bounds. It is even more dangerous to make INFBND smaller
then some component of a globally optimal solution, since OptQuest can
never generate a trial point near that solution. It is possible, however, for
the local solver to reach a global solution in this case, since the artificial
bounds are not imposed on it.

ITERATION PRINT
FREQUENCY

If the OQNLP iteration log is written to the OQNLP log file, one line
of output is written every k’th OptQuest iteration, where k is the value
given here.

20

ITERATION LIMIT Increasing this limit can allow OQNLP to find a better solution. Try
it if your run using 1000 iterations doesn’t take too long. Surprisingly,
the best solution using, say 2000 iterations, may be found in the first
1000 iterations, and that solution may be better then the one found with
an iteration limit of 1000. This is because OptQuest changes its search
strategy depending on the iteration limit. Because of this, it is also
possible that increasing the iteration limit will yield a worse solution,
but this is rare. Decreasing this iteration limit usually leads to a worse
solution, but also reduces run time.

1000

14

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:, continued

Option Description Default

LOCALS FILE Specify a complete path and name for a file to which the objective value
and values of all variables for all local solutions found will be written.
For example, C:\temp\opt.out. There are 2 possible formats for this file,
specified by the LOCALS FILE FORMAT option below. If there is no
LOCALS FILE specified, the locals file will not be created. WARN-
ING, no file will be created unless Prob.OQNLP.PrintFile is set.

LOCALS FILE FORMAT There are 2 possible values for this option. The REPORT entry cre-
ates the locals file in a format designed to be examined easily by eye,
but processed less easily by a computer program or spreadsheet. The
DATA1 entry creates a file with many records, each on a single line, each
having the following format: < indexoflocaloptimum >< objval ><

varindex >< varindex >.

DATA1

MAX LOCALS When the number of distinct local solutions found by OQNLP exceeds
the value specified here, OQNLP will stop, returning the best solution
found.

1000

MAX SOLVER CALLS When the number of calls to the NLP solver exceeds the value specified
here, OQNLP will stop, returning the best solution found.

1000

MAX SOLVER CALLS
NOIMPROVEMENT

The positive integer specified here will cause OQNLP to stop whenever
the number of consecutive solver calls with a fractional improvement in
the best objective value found less than 1.e-4 exceeds that values. In
other words, if the value specified is 50, and there are more than 50
consecutive solver calls where the relative change in the best objective
was less then 1.e-4 in all iterations, OQNLP will stop.

100

MAXTIME When the execution time spent by OQNLP exceeds this number of sec-
onds, OQNLP will stop and return the best solution found.

1000

MERIT WAITCYCLE This value must be a positive integer. If the merit filter is used, and there
are MERIT WAITCYCLE consecutive iterations where the merit filter
logic causes the NLP solver not to be started, the merit filter thresh-
old is increased by the factor THRESHOLD INCREASE FACTOR (see
below). Increasing MERIT WAITCYCLE usually leads to fewer solver
calls, but risks finding a worse solution. Decreasing it leads to more
solver calls, but may find a better solution.

20

15

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:, continued

Option Description Default

OPTQUEST ONLY If you think the NLP solver is taking too long and/or not working well,
choosing 1 will stop it from being called. This may occur if the problem
is of type ”DNLP”, where one or more problem functions are discontin-
uous or have discontinuous derivatives. If the problem has only discrete
(integer) variables, choose 1, as there is nothing for the NLP solver to do
(since it optimizes over the continuous variables when the integers are
fixed, and there aren’t any).

0

OQ ALL DISCRETE This option sets the filter logic for problems with discrete variables.
Setting this option to 1 has the potential to produce better solutions
but also consumes more computing time.

0

PENALTY FUNCTION Results using either choice are usually similar, but choosing 1 can lead
to fewer iterations. The 1 value causes the exact penalty function to be
used, while 0 uses OptQuest’s internal penalty function, whose penalty
term is the largest percentage violation of all violated constraints.

1

POINT GENERATION ’OPTQUEST’ causes trial points to be generated by the OptQuest
driver. This option is only available with TOMLAB /OQNLP and is
the default for this option.

See text

’RANDOM’ causes trial points to be generated by sampling each variable
from a uniform distribution defined within its bounds.
’SMARTRANDOM1’ generates trial points by sampling each variable
independently from either normal or triangular distributions. This is
the default for TOMLAB /MSNLP.

RANDOM NUMBER SEED The options are: 0
String ’RANDOM’ = random seed computed from clock.
String ’DEFAULT’ = default seed value 1234.
Any positive value = seed set to that value.
Negative values = negated to positive.
0 = equivalent to ’DEFAULT’.

SAMPLING DISTRIBUTION This keyword is relevant only when POINT GENERATION is set to
SMARTRANDOM1. Then a value of 0 causes normal distributions to
be used to generate trial points, while a value of 1 causes triangular
distributions to be used.

0

SEARCH PARAMETER This parameter has a range between zero and one, and a default value
of 0.5. Increasing it causes more trial points to be directed towards the
boundary. This is advisable if you believe the optimal solution will be
on the boundary or at a vertex, as is true for problems where a concave
function is maximized subject to linear constraints.

0.5

16

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:, continued

Option Description Default

SEARCH TYPE This option controls the search strategy used by OptQuest. The three
choices that are relevant for use within OQNLP are:

boundary

aggressive This choice controls the population update of the OptQuest
algorithm. It triggers a very aggressive update, which keeps the best of
the points generated from the current population as the new population.
The risk in this is that all points in the new population may cluster in
a small portion of the search volume, and regions far from this volume
will not be explored in the next cycle.
boundary This option affects the trial points generated by OptQuest,
directing them toward the boundary of the region defined by the linear
constraints and variables bounds. The value of SEARCH PARAMETER
discussed below controls the fraction of points that are directed towards
the boundary.
crossover This option affects how OptQuest trial points are generated
from population points. It retains the linear combination operator, but
adds a ”crossover” operator, similar to those used in evolutionary or
genetic algorithms, to create 2 additional trial points.

STAGE1 ITERATIONS Specifies the total number of OptQuest iterations in stage 1 of the
OQNLP algorithm, where no NLP solver calls are made. Increasing
this sometimes leads to a better starting point for the first local solver
call in stage 2, at the cost of delaying the call. Decreasing it can lead to
more solver calls, but the first call occurs sooner.

200

STARTING MULTIPLIER Since no Lagrange multiplier values are available until the first solver
call at the end of stage 1, this value is used for all multipliers if
PENALTY FUNCTION is set to 1.

1000

START WITH NLP SOLVER In the beginning, OQNLP passes the starting point defined in the TOM-
LAB model to the NLP subsolver. This will ensure that solutions gen-
erated with OQNLP will be always as good as the one generated by the
NLP subsolver alone. After this initial call the OQNLP algorithm con-
tinues as usual. The initial call to the NLP subsolver starting from the
point defined by the TOMLAB model can be suppressed by setting this
parameter to 0.

1

THRESHOLD
INCREASE FACTOR

This value must be nonnegative. If there are MERIT WAITCYCLE con-
secutive OptQuest iterations where the merit filter logic causes the NLP
solver not to be called, the merit threshold is increased by multiplying
it by (1+THRESHOLD INCREASE FACTOR)

0.2

17

Table 8: User options for the TOMLAB /OQNLP solvers. The following fields are used:, continued

Option Description Default

USE DISTANCE FILTER Use 0 to turn off the distance filter, the logic which starts the NLP
solver at a trial point only if the (Euclidean) distance from that point to
any local solution found thus far is greater than the distance threshold.
Turning off the distance filter leads to more solver calls and more run
time, and increases the chances of finding a global solution. Turn off
both distance and merit filters to find (almost) all local solutions.

1

USE LINEAR
CONSTRAINTS

This option applies only to problems which have linear constraints other
than simple bounds on the variables. Using 1 (all OptQuest trial points
satisfy the linear constraints) often leads to fewer iterations and solver
calls, but OptQuest has to solve an LP to project each trial point onto
the linear constraints. For large problems (more than 100 variables),
this can greatly increase run time, so the default value is off (0)

0

USE MERIT FILTER Use 0 to turn off the merit filter, the logic which starts the NLP solver
at a trial point only if the penalty function value at that point is below
the merit threshold. This will lead to more solver calls, but increase the
chances of finding a global solution. Turn off both filters of you want to
find (almost) all local solutions. This will cause the solver to be called
at each stage 2 iteration.

1

WAITCYCLE This value must be a positive integer. If the merit filter is used, and
there are WAITCYCLE consecutive iterations where the merit filter
logic causes the NLP solver not to be started, the merit filter thresh-
old is increased by the factor THRESHOLD INCREASE FACTOR (see
above). Increasing WAITCYCLE usually leads to fewer solver calls, but
risks finding a worse solution. Decreasing it leads to more solver calls,
but may find a better solution.

20

18

4.5 LSGRG2 options

The following options are available for the LSGRG2 solver included with the TOMLAB /OQNLP /MSNLP
package. The fields are set in Prob.LSGRG2.options. It is only possible to set these fields when calling LSGRG2
directly, i.e. they are ignored if calling OQNLP.

Table 9: User options for the TOMLAB /OQNLP - LSGRG2 solver. The following fields are used:

Option Description Default

EPNEWT A constraint is assumed to be binding if it is within this epsilon of one of its bounds. 1e− 4

EPINIT If it is desired to run the problem with EPNEWT initially set fairly large and then
tightened at the end of the optimization then this is accomplished by assigning
EPINIT the initial tolerance and EPNEWT the final one. Doing this often reduces
run time.

1e− 4

EPSTOP If the fractional change in the objective is less than EPSTOP for NSTOP consecu-
tive iterations, the program will stop. The program will also stop if Kuhn-Tucker
optimality conditions are satisfied to within EPSTOP.

1e− 4

EPSPIV If, in constructing the basis inverse, the absolute value of a prospective pivot element
is less than EPSPIV, the pivot will be rejected and another pivot element will be
sought.

1e− 6

PH1EPS If nonzero, the phase 1 objective (normally the sum of infeasibilities, sinf) is aug-
mented by a multiplier, say w, times the true objective, obj, so that the new phase
1 objective is sinf+w*obj. The multiplier, w, is selected so that, at the initial point,
w∗obj = PH1EPS∗sinf . In phase 1 the term w∗obj should be small relative to sinf,
so PH1EPS should be less than 1.0, with 0.1 a reasonable default value. The reason
for setting PH1EPS positive is to cause phase 1 to pay a small amount of attention
to the objective, so that any feasible point found will have a good objective value.

0.0

AIJTOL Zero tolerance for Jacobian elements. Any derivative with absolute value less than
this value will be set to zero.

1e− 10

PIVPCT When choosing pivots for each row, all columns with updated entries within PIVPCT
of the maximum will be considered.

1e− 1

PSTEP This is the step size used in PARSHF and PARSHC for estimating partial derivatives
of the functions with respect to the variables. This value is computed from the
calculated machine precision.

1e− 8

FUNPR The function precision. 1e− 8

19

Table 9: User options for the TOMLAB /OQNLP - LSGRG2 solver. The following fields are used:,
continued

Option Description Default

CONDTL When factoring the basis matrix, this is the largest condition number which is ac-
ceptable. Blocks whose estimated condition number exceeds CONDTL are considered
to be ill-conditioned, and an error message is issued to that effect. If you see these
messages, either automatic or user scaling can improve the situation.

1e + 8

EPBOUN A variable is considered to be at its bound if it is within EPBOUN of the bound. 1e− 6

EPDEG If problem becomes degenerate, the variable bounds will be perturbed by this relative
tolerance, and the problem re solved.

1e− 4

MAXTIME Time limit in seconds. 1000

NSTOP If the fractional change in the objective is less than EPSTOP for NSTOP consecutive
iterations, the program will stop.

3

ITLIM If subroutine newton takes ITLIM iterations without converging satisfactorily, the
iterations are stopped and corrective action is taken.

10

LIMSER If the number of completed one dimensional searches equals LIMSER, optimization
will terminate.

10, 000

INPRNT If 1, turns on printing of initial problem structure, option settings, initial values,
bounds, and status of variables and rows.

0

OTPRNT If 1, turns on printing of final values and status of rows and variables, Lagrange
multipliers, reduced gradients, and run statistics.

0

IPR Suppress all output printing except initial and final reports. 0
1 = Print one line of output for each one dimensional search.
2 = Provide more detailed information on the progress of each one dimensional search.
3 = Expand the output to include the problem function values and variable values
at each iteration as well as the separation of constraints into nonbinding and binding
and variables into basic, superbasic and nonbasic.
4 = At each iteration the reduced gradient, the search direction and the tangent
vector are printed.
5 = Provides details of the basis inversion process including the initial basis and
its inverse. also displays the variable values and constraint errors for each newton
iteration.
6 = This is the maximum level of print available and includes all of the above along
with detailed progress of the basis construction phase, including the basis inverse at
each pivot.

20

Table 9: User options for the TOMLAB /OQNLP - LSGRG2 solver. The following fields are used:,
continued

Option Description Default

IPN# If IPN# is greater than zero then IPR will be set to # after IPN# iterations. The
symbol # may be 4, 5, or 6. For example, setting IPN5 to 20 sets the print level IPR
to 5 after 20 iterations.

0

IPER If IPER is greater than zero then for every IPER th iteration, LSGRG2 output will
use the current value of IPR, otherwise use IPR=1.

0

IQUAD Method for initial estimates of basic variables for each one dimensional search . 0
0 = Tangent vector and linear extrapolation will be used.
1 = Quadratic extrapolation will be used.

KDERIV Method for obtaining partial derivatives. 0
0 = Forward difference approximation.
1 = Central difference approximation.
2 = User supplied subroutine parsh is used.

MODCG MODCG and MAXHES (see below) control use of a conjugate gradient (cg) method.
If the number of superbasic variables exceeds MAXHES, the cg method indicated
by MODCG is used. Default value of MODCG = 6. To use a cg method at each
iteration, set MAXHES = 0.

6

1 = Uses fletcher reeves formula.
2 = Uses polak ribiere formula.
3 = Uses perrys formula.
4 = Uses 1 step version of the DFP quasi-newton method.
5 = Uses 1 step version of the BFGS quasi-newton method.
6 = Uses limited memory version of the BFGS quasi-newton method.
NOTE: if MODCG = 6, the optional parameters MEMCG and HSCALE (see below)
are relevant.

MXTABU The maximum length of the tabu list in chuzq. 25

IDEGLM The maximum number of consecutive degenerate steps before the subroutine termi-
nates.

25

ISCALE Determines whether Jacobian scaling will be used at the initial point. 0
0 = Do not scale jacobian.
1 = Scale the jacobian.

ISCLAG Rescale the Jacobian after every ISCLAG line searches are performed. 0
0 = No rescaling is performed.
> 0 = Rescale after ISCLAG line searches.

21

Table 9: User options for the TOMLAB /OQNLP - LSGRG2 solver. The following fields are used:,
continued

Option Description Default

MEMCG If using MODCG = 6, MEMCG is the memory length of the limited memory cg
method. Note: this method is only used if MODCG = 6.

3

IBVBLM If a basic variable is in the basis at a bound for IBVBLM consecutive iterations, the
LSGRG2 basis factorization routine does not try to replace it.

2

HRDBND The maximum length of the tabu list in chuzq. 0
0 = This allows the user routines to be called with some variables outside their bounds.
This can cause errors when routines contain functions like square roots, logs, etc.
1 = All variables will be within their bounds.

FIXPIV The maximum length of the tabu list in chuzq. 0
0 = The pivot tolerance PIVPCT will be fixed at the specified level.
1 = The pivot tolerance PIVPCT will be adjusted dynamically.

GFEAS Phase control. 0
0 = Both phase 1 and phase 2 are performed.
1 = Only a phase 1 is performed. The algorithm will terminate when a feasible point
is found.

USEPH0 Phase control. 1
0 = No phase 0 is performed. Instead, a normal phase 1 is performed if the initial
point is not feasible.
1 = A phase 0 is performed to attempt to find an initial feasible point via newtons
method. This method is usually faster, but can occasionally cause LSGRG2 to fail,
in which case it should be disabled.

22

4.6 LSGRG2 printing

The LSGRG2 printing logic is described below.

Prob.PriLevOpt is called PriLev in the text.

PriLev controls the amount of output from LSGRG2, by setting the print level (IPR) to PriLev. PriLev also
controls whether information shall be printed to the MATLAB screen or not. If PriLev is > 0, information from
LSGRG2 is printed to the MATLAB screen.

Prob.LSGRG2.options.IPR is a solver specific option controlling the amount of output to be printed. It takes
precedence to PriLev, i.e. an old IPR value set by PriLev is reset to the new Prob.LSGRG2.options.IPR value.
IMPORTANT: PriLev remains PriLev, and it still controls any output to the MATLAB screen.

Prob.LSGRG2.PrintFile is the name of the output file. If set by the user and printing is turned on, the file will be
created.

If PriLev <= 0 and printing is enabled through solver specific options and no Prob.LSGRG2.PrintFile name is
given, a default file is opened.

If PriLev > 0 and printing is enabled in some way and no Prob.LSGRG2.PrintFile name is given, no default file
will be opened, as the user may only want screen printing.

Options controlling printing are: Prob.LSGRG2.options.INPRNT, .OTPRNT, .IPR, .IPN#, .IPER.

In summary:

• Prob.PriLevOpt controls .IPR as long as .IPR is not given explicitly.

• No default print file is created if Prob.PriLevOpt is set. Although, if Prob.LSGRG2.PrintFile is set, a print
file always is created, as long as there is something to print.

23

5 Algorithm

5.1 Multistart overview

A pseudo-code description of the MSNLP algorithm follows, in which SP(xt) denotes the starting point generator
and xt is the candidate starting point produced. We refer to the local NLP solver as L(xs, xf), where xs is the
starting point and xf the final point. The function UPDATE LOCALS(xs, xf, w) processes and stores solver out-
put xf, using the starting point xs to compute the distance from xs to xf, and produces updated penalty weights, w.

MSNLP Algorithm
STAGE 1
x0 = user initial point
Call L(x0, xf)
Call UPDATE LOCALS(x0, xf,w)
FOR i = 1, n1 DO

Call SP(xt(i))
Evaluate P(xt(i),w)

ENDDO
xt* = point yielding best value of P(xt(i),w) over all stage one points, (i = 1, 2, ..., n1).
call L(xt*, xf)
Call UPDATE LOCALS(xt*, xf,w)
threshold = P(xt*,w)
STAGE 2
FOR i = 1, n2 DO Call SP(xt(i))

Evaluate P(xt(i),w)
Perform merit and distance filter tests:
Call distance filter(xt(i), dstatus)
Call merit filter(xt(i), threshold, mstatus)
IF (dstatus and mstatus = ’accept’) THEN

Call L(xt(i), xf)
Call UPDATE LOCALS(xt(i), xf, w)

ENDIF
ENDDO

After an initial call to L at the user-provided initial point, x0, stage 1 of the algorithm performs n1 iterations in
which SP(xt) is called, and the L1 exact penalty value P(xt,w) is calculated. The user can set n1 through the
MSNLP options structure using the STAGE1 ITERATIONS keyword. The point with the smallest of these P
values is chosen as the starting point for the next call to L, which begins stage 2. In this stage, n2 iterations are
performed in which candidate starting points are generated and L is started at any one which passes the distance
and merit filter tests.

The distance filter helps insure that the starting points for L are diverse, in the sense that they are not too close
to any previously found local solution. Its goal is to prevent L from starting more than once within the basin
of attraction of any local optimum. When a local solution is found, it is stored in a linked list, ordered by its
objective value, as is the Euclidean distance between it and the starting point that led to it. If a local solution is
located more than once, the maximum of these distances, maxdist, is updated and stored. For each trial point,

24

t, if the distance between t and any local solution already found is less than DISTANCE FACTOR*maxdist, L is
not started from the point, and we obtain the next trial solution from the generator.

This distance filter implicitly assumes that the attraction basins are spherical, with radii at least maxdist. The
default value of DISTANCE FACTOR is 1.0, and it can be set to any positive value. As DISTANCE FACTOR
approaches zero, the filtering effect vanishes, as would be appropriate if there were many closely spaced local
solutions. As it becomes larger than 1, the filtering effect increases until eventually L is never started.

The merit filter helps insure that the starting points for L have high quality, by not starting from candidate points
whose exact penalty function value P1 is greater than a threshold. This threshold is set initially to the P1 value
of the best candidate point found in the first stage of the algorithm. If trial points are rejected by this test for
more than WAITCYCLE consecutive iterations, the threshold is increased by the updating rule:

threshold < − threshold + THRESHOLD INCREASE FACTOR∗(1.0 + abs(threshold))

where the default value of THRESHOLD INCREASE FACTOR is 0.2 and that for WAITCYCLE is 20. The
additive 1.0 term is included so that threshold increases by at least THRESHOLD INCREASE FACTOR when
its current value is near zero. When a trial point is accepted by the merit filter, threshold is decreased by setting
it to the P1 value of that point.

The combined effect of these 2 filters is that L is started at only a few percent of the trial points, yet global optimal
solutions are found for a very high percentage of the test problems. However, the chances of finding a global opti-
mum are increased by increasing ITERATION LIMIT (which we recommend trying first) or by ’loosening’ either
or both filters, although this is rarely necessary if the dynamic filters and basin overlap fix are used, as they are by
default. If the ratio of stage 2 iterations to solver calls is more than 20 using the current filter parameters, and com-
putation times with the default filter parameters are reasonable, one can try loosening the filters. This is achieved
for the merit filter either by decreasing WAITCYCLE or by increasing THRESHOLD INCREASE FACTOR (or
doing both), and for the distance filter by decreasing DISTANCE FACTOR. Either or both filters may be turned
off, by setting USE DISTANCE FILTER and/or USE MERIT FILTER to 0. Turning off both causes an NLP
solver call at every stage 2 trial point. This is the best way to insure that all local optima are found, but it can
take a long time.

5.2 Pure and smart random drivers

The ’pure’ random (PR) driver generates uniformly distributed points within the hyper-rectangle S defined by
the variable bounds. However, this rectangle is often very large, because users often set bounds to (-inf,+inf),
(0,+inf), or to large positive and/or negative numbers, particularly in problems with many variables. This usually
has little adverse impact on a good local solver, as long as the starting point is chosen well inside the bounds.
But the PR generator will often generate starting points with very large absolute component values when some
bounds are very large, and this sharply degrades solver performance. Thus we were motivated to develop random
generators which control the likelihood of generating candidate points with large components, and intensify the
search by focusing points into promising regions. We present two variants, one using normal, the other triangular
distributions. Pseudo-code for this ’smart random’ generator using normal distributions follows, where w is the
set of penalty weights determined by the ’update locals’ logic discussed above, after the first solver call at the
user-specified initial point.

Smart Random Generator with Normal Distributions, SRN(xt)

IF (first call) THEN
Generate k1 (default 400) diverse points in S and evaluate the exact penalty function P(x,w) at each point.
B=subset of S with k2 (default 10) best P values

25

FOR i = 1,nvars DO
xmax(i) = max of component i of points in B
xmin(i)= min of component i of points in B
mu(i) = (xmax(i) + xmin(i))/2
ratio(i) = (xmax(i) - xmin(i))/(1+buvar(i)-blvar(i))
sigfactor = 2.0
IF (ratio>0.7) sigfactor = f(ratio)
sigma(i) = (xmax(i) - xmin(i))/sigfactor

ENDDO
ENDIF
FOR i = 1,nvars DO

Generate a normally distributed random variable rv(i) with mean mu(i) and standard deviation sigma(i)
If rv(i) is between blvar(i) and buvar(i), xt(i) = rv(i)
If rv(i)<blvar(i), generate xt(i) uniformly between blvar(i) and xmin(i)
If rv(i)>buvar(i), generate xt(i) uniformly between xmax(i) and buvar(i)

ENDDO
Return xt

This SRN generator attempts to find a subset, B, of k2 ’good’ points, and generates most of its trial points
xt, within the smallest rectangle containing B. It first generates a set of k1 diverse points within the bounds
using a stratified random sampling procedure with frequency-based memory. For each variable x(i), this divides
the interval [blvar(i), buvar(i)] into 4 equal segments, chooses a segment with probability inversely proportional
to the frequency with which it has been chosen thus far, then generates a random point in this segment. We
choose k2 of these points having the best P(x,w) penalty values, and use the smallest rectangle containing these,
intersecting the ith axis at points [xmin(i), xmax(i)], to define n univariate normal distributions (driver SRN) or n
univariate triangular distributions (driver SRT). The mean of the ith normal distribution, mu(i), is the midpoint
of the interval [xmin(i), xmax(i)], and this point is also the mode of the ith triangular distribution, whose lower
and upper limits are blvar(i) and buvar(i). The standard deviation of the ith normal distribution is selected as
described below. The trial point xt is generated by sampling n times independently from these distributions. For
the driver using normals, if the generated point lies within the bounds, it is accepted. Otherwise, we generate a
uniformly distributed point between the violated bound and the start of the interval.

To determine the standard deviation of the normal distributions, we compute ratio, roughly the ratio of interval
width to distance between bounds, where the factor 1.0 is included to avoid division by zero when the bounds
are equal (fixed variables). If the interval width is small relative to the distance between bounds for variable i
(ratio ≤ 0.7), then the standard deviation sigma(i) is half the interval width, so about 1/3 of the xt(i) values
fall outside the interval, providing diversity when the interval does not contain an optimal value for x(i). If the
bounds are large, then ratio should be small, say less than 0.1, so xt(i) values near the bounds are very unlikely.
If ratio > 0.7, the function f sets sigfactor equal to 2.56 if ratio is between 0.7 and 0.8, increasing in steps to 6.2
if textitratio > 0.999. Thus if ratio is near 1.0, more than 99% of the values fall within the interval, and few
have to be projected back within the bounds. The projecting back process avoids undesirable clustering of trial
points at a bound, by generating points uniformly between the violated bound and the nearest edge of the interval
[xmin(i), xmax(i)]. When the interval [xmin(i), xmax(i)] is sharply skewed toward one of the variable bounds and
is much narrower than the distance between the bounds, a symmetric distribution like the normal, combined with
our projection procedure, generates too many points between the interval and its nearest bound. A quick scan of
the test results indicates that this happens rarely, but an asymmetric distribution like the triangular overcomes

26

this difficulty, and needs no projection.

27

	Contents
	1 Introduction
	1.1 Overview
	1.2 Contents of this Manual
	1.3 More information
	1.4 Prerequisites

	2 Using the Matlab Interface
	3 Setting OQNLP Options
	3.1 Setting options using the OQNLP.options structure

	4 TOMLAB /OQNLP Solver Reference
	4.1 oqnlpTL
	4.2 msnlpTL
	4.3 lsgrg2TL
	4.4 OQNLP and MSNLP options
	4.5 LSGRG2 options
	4.6 LSGRG2 printing

	5 Algorithm
	5.1 Multistart overview
	5.2 Pure and smart random drivers

