USER’S GUIDE FOR SNOPT 5.3:
A FORTRAN PACKAGE FOR
LARGE-SCALE NONLINEAR PROGRAMMING

Philip E. GILL
Department of Mathematics
University of California, San Diego
La Jolla, California 92093-0112

Walter MURRAY and Michael A. SAUNDERS
Systems Optimization Laboratory
Department of EESOR
Stanford University
Stanford, California 94305-4023

DRAFT, December 7, 1998

Abstract

SNOPT is a general-purpose system for solving optimization problems involving
many variables and constraints. It minimizes a linear or nonlinear function subject to
bounds on the variables and sparse linear or nonlinear constraints. It is suitable for
large-scale linear and quadratic programming and for linearly constrained optimization,
as well as for general nonlinear programs.

SNOPT finds solutions that are locally optimal, and ideally any nonlinear functions
should be smooth and users should provide gradients. It is often more widely useful.
For example, local optima are often global solutions, and discontinuities in the function
gradients can often be tolerated if they are not too close to an optimum. Unknown
gradients are estimated by finite differences.

SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains
search directions from a sequence of quadratic programming subproblems. Each QP
subproblem minimizes a quadratic model of a certain Lagrangian function subject to
a linearization of the constraints. An augmented Lagrangian merit function is reduced
along each search direction to ensure convergence from any starting point.

SNOPT is most efficient if only some of the variables enter nonlinearly, or if the
number of active constraints (including simple bounds) is nearly as large as the num-
ber of variables. SNOPT requires relatively few evaluations of the problem functions.
Hence it is especially effective if the objective or constraint functions (and their gradi-
ents) are expensive to evaluate.

The source code for SNOPT is suitable for any machine with a Fortran compiler.
SNOPT may be called from a driver program (typically in Fortran, C or MATLAB).
SNOPT can also be used as a stand-alone package, reading data in the MPS format
used by commercial mathematical programming systems.

Keywords: Nonlinear programming, constrained optimization, nonlinear constraints,
SQP methods, limited-storage quasi-Newton updates, Fortran software.

pgill@Qucsd.edu walter@sol-walter.stanford.edu mike@sol-michael.stanford.edu
http://sdna3.ucsd.edu/~peg http://www.stanford.edu/~walter/ http://www.stanford.edu/~saunders/

Contents

1.

Introduction

1.1 Problem types L
1.2 Subroutines e e e e e
1.3 Files o e e e e e e e e e
Description of the method

2.1 Constraints and slack variables
2.2 Majoriterations e
2.3 Minor iterations L.
2.4 The merit function
2.5 Treatment of constraint infeasibilities

Identifying structure in the objective and constraints

3.1 Problem dimensions L e
Subroutine snopt

User-supplied subroutines

5.1 Subroutine funobjo o
5.2 Subroutine funcon
5.3 Constant Jacobian elements
5.4 Example
The SPECS file

6.1 SPECS file checklist and defaults
6.2 Subroutine snlnit. L
6.3 Subroutine snSpec L.
6.4 Subroutines snset, snseti, snsetr Lo
6.5 Subroutines sngetc, sngeti, sngetro
6.6 Description of the optional parameters
Output

7.1 The PRINT file it
7.2 The major iterationlog
7.3 The minor iteration log
7.4 Basis factorization statistics Lo
7.5 Crashstatistics L
7.6 EXIT conditions e
7.7 Solution output e
7.8 The SOLUTION file il it e
7.9 The SUMMARY file e
BASIS files

81 NEW and OLD BASISfiles i it
8.2 PUNCH and INSERT files

83 DUMP and LOAD files

1. Introduction 3

1. Introduction

SNOPT is a collection of Fortran 77 subroutines for solving the nonlinear programming
problem, which is assumed to be stated in the form

NP minimize f(z)
x
”’ (1.1)
subject to [< | F(z) | <w,
Gz

where [and u are constant lower and upper bounds, f is a smooth scalar objective function,
G is a sparse matrix, and F'(z) is a vector of smooth nonlinear constraint functions {F;(z)}.
(The optional parameter maximize may be used to specify a problem in which f is maximized
instead of minimized.)

Ideally, the first derivatives (gradients) of f and F; should be known and coded by the
user. If only some gradients are known, SNOPT will estimate the missing ones with finite
differences.

Note that upper and lower bounds are specified for all variables and constraints. This
form allows full generality in specifying various types of constraint. Special values are used
to indicate absent bounds (I[; = —oo or u; = +oo for appropriate j). Free variables and
free constraints (“free rows”) are ones that have both bounds infinite. Fixed variables and
equality constraints have I; = u;.

1.1. Problem types

In general, the objective and constraint functions are structured in the sense that they are
formed from sums of linear and nonlinear functions. This structure can be exploited by
SNOPT (see §3).

If the nonlinear functions are absent, the problem is a linear program (LP) and SNOPT
applies the primal simplex method [2]. Sparse basis factors are maintained by LUSOL [8] as
in MINOS [13].

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends
to solve more easily than the general case with nonlinear constraints (NC). For both cases,
SNOPT applies a sparse sequential quadratic programming (SQP) method [6], using limited-
memory quasi-Newton approximations to the Hessian of the Lagrangian. The merit function
for steplength control is an augmented Lagrangian, as in the dense SQP solver NPSOL [7, 10].

In general, SNOPT requires less matrix computation than NPSOL and fewer evaluations
of the functions than the nonlinear algorithms in MINOS [11, 12]. It is suitable for nonlinear
problems with thousands of constraints and variables, but not thousands of degrees of
freedom. (Thus, for large problems there should be many constraints and bounds, and
many of them should be active at a solution.)

4 User’s Guide for SNOPT

1.2. Subroutines

SNOPT is accessed via the following routines:

snlnit (§6.2) Must be called before any other SNOPT routines.

snSpec (§6.3) May be called to input a SPECS file (a list of run-time options).
snset, snseti, snsetr (§6.4) May be called to specify a single option.

sngetc, sngeti, sngetr (§6.5) May be called to obtain an option’s current value.

funcon, funobj (§5) Supplied by the user and called by snopt. They define the constraint
functions F(x) and objective function f(z).

snopt (§4) The main solver.

snMem (In distribution file sn12snzz.f) Computes the size of the workspace arrays cw,
iw, rw required for given problem dimensions. Intended for Fortran 90 drivers that
reallocate workspace if necessary.

The user routines funcon and funobj have a fixed parameter list but may have any conve-
nient name. They are passed to snopt as parameters.

The SNOPT routines are intended to be re-entrant (as long as the Fortran compiler
allocates local variables dynamically). Hence they may be used in a parallel or multi-thread
environment. They may also be called recursively.

1.3. Files
SNOPT reads or creates the following files:

SPECS file. A list of run-time options, input by snSpec.
PRINT file. A detailed iteration log, error messages, and optionally the printed solution.

SUMMARY file. A brief iteration log, error messages, and the final solution status.
Intended for screen output in an interactive environment.

SOLUTION file. A separate copy of the printed solution.

BASIS files. To allow restarts.

You must define unit numbers for the specs, print and summary files by specifying
appropriate parameters for snInit and snSpec. For a more detailed description of the files
that can be created by SNOPT, see §8.

2. Description of the method 5

2. Description of the method

Here we briefly describe the main features of the SQP algorithm used in SNOPT and intro-
duce some terminology used in the description of the subroutine and its arguments. The
SQP algorithm is fully described in [6].

2.1. Constraints and slack variables

The upper and lower bounds on the m components of F' and Gz are said to define the
general constraints of the problem. SNOPT converts the general constraints to equalities
by introducing a set of slack variables s, where s = (s1,52,...,8,)7. For example, the
linear constraint 5 < 2z; 4+ 3x2 < 400 is replaced by 2z1 + 3z2 — s1 = 0 together with the
bounded slack 5 < s; < 4o00. The problem defined by (1.1) can therefore be rewritten in
the following equivalent form
minimize f(z)
z,8

)

subject to (F(”’))—szo, 1< (m) < u.
Gx s

The linear and nonlinear general constraints become equalities of the form F(z) — sy =0
and Gz — s;, = 0, where s, and sy are known as the linear and nonlinear slacks.

2.2. Major iterations

The basic structure of SNOPT involves major and minor iterations. The major iterations
generate a sequence of iterates () that satisfy the linear constraints and converge to a point
that satisfies the first-order conditions for optimality. At each iterate a QP subproblem is
used to generate a search direction towards the next iterate (zyy1). The constraints of the
subproblem are formed from the linear constraints Gz —s; = 0 and the nonlinear constraint
linearization

F(xg) + F'(z)(x — z5) — sy =0,

where F'(z) denotes the Jacobian matriz, whose rows are the first derivatives of F(z)
evaluated at z;. The QP constraints therefore comprise the m linear constraints

F'(zg)r —sy —F(x1) + F'(z) s,
Gz —s, = 0,

where z and s are bounded above and below by u and [as before. If the m x n matrix A
and m-vector b are defined as

A= (F'(mk)) and b= (—F(.’Ek)+FI(:L'k):L'k>7
G 0

then the QP subproblem can be written as

minmir?ize g(z) subjectto Az —s=0b, [< (i) <wu, (2.1)
where ¢(z) is a quadratic approximation to a modified Lagrangian function [6]. The linear
constraint matrix A above is input to SNOPT by means of the arguments a(*), ha(*) and
ka(*) (see §4). Access to this matrix allows the user to specify the pattern of nonzero ele-
ments in F'(z) and G, and to identify any nonzero elements that remain constant throughout
the minimization.

6 User’s Guide for SNOPT

2.3. Minor iterations

Solving the QP subproblem is itself an iterative procedure, with the minor iterations of an
SQP method being the iterations of the QP method. At each minor iteration, the constraints
Az — s = b are (conceptually) partitioned into the form

Bxy + Sxs+ Nxzy =0,

where the basis matriz B is square and nonsingular. The elements of x5, s and xy are
called the basic, superbasic and nonbasic variables respectively; they are a permutation
of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their bounds, while the nonbasic variables will be equal to one of their
upper or lower bounds. At each iteration, z¢ is regarded as a set of independent variables
that are free to move in any desired direction, namely one that will improve the value of the
QP objective (or the sum of infeasibilities). The basic variables are then adjusted in order
to ensure that (x, s) continues to satisfy Az —s = b. The number of superbasic variables (ns
say) therefore indicates the number of degrees of freedom remaining after the constraints
have been satisfied. In broad terms, ng is a measure of how nonlinear the problem is. In
particular, ng will always be zero for LP problems.

If it appears that no improvement can be made with the current definition of B, S and
N, a nonbasic variable is selected to be added to S, and the process is repeated with the
value of ng increased by one. At all stages, if a basic or superbasic variables encounters one
of its bounds, the variables is made nonbasic and the value of ns is decreased by one.

Associated with each of the m equality constraints Ax — s = b are the dual variables
w. Similarly, each variable in (z,s) has an associated reduced gradient dj. The reduced
gradients for the variables = are the quantities g — AT 7, where g is the gradient of the
QP objective, and the reduced gradients for the slacks are the dual variables 7. The QP
subproblem is optimal if d; > 0 for all nonbasic variables at their lower bounds, d; < 0
for all nonbasic variables at their upper bounds, and d; = 0 for other variables, including
superbasics. In practice, an approzimate QP solution is found by relaxing these conditions
on d; (see the Minor optimality tolerance described in §6.6).

2.4. The merit function

After a QP subproblem has been solved, new estimates of the NP solution are computed
using a linesearch on the augmented Lagrangian merit function

M(z,s,7) = f(z) — 71 (F(z) — s5) + L (F(z) — sN)TD(F(m) —sn), (2.2)

where D is a diagonal matrix of penalty parameters. If (zj,sg,n) denotes the current
solution estimate and (T, Sy, 7Tx) denotes the optimal QP solution, the linesearch determines
a step ax (0 < ax < 1) such that the new point

Th41 T Ty — g
Skv1 | = | sk | tar | Sk—sk (2.3)
Th+1 Tk 7?16 — Tk

gives a sufficient decrease in the merit function (2.2). When necessary, the penalties in D
are increased by the minimum-norm perturbation that ensures descent for M [10]. As in
NPSOL, sy is adjusted to minimize the merit function as a function of s prior to the solution
of the QP subproblem. For more details, see [7, 3].

2. Description of the method 7

2.5. Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. Infeasible linear constraints are
detected first by solving a problem of the form

FLP minimize e’ (v + w)
T,v,w
T
subject to [< <wu, v>0, w>0
. _<Gx—u+w>_ ’ = =

where e is a vector of ones. This is equivalent to minimizing the sum of the general linear
constraint violations subject to the simple bounds. (In the linear programming literature,
the approach is often called elastic programming.)

If the linear constraints are infeasible (v # 0 or w # 0), SNOPT terminates without
computing the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates satisfy the linear constraints.
(Such a strategy allows linear constraints to be used to define a region in which the functions
can be safely evaluated.) SNOPT proceeds to solve NP as given, using search directions
obtained from a sequence of quadratic programming subproblems (2.1).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables 7
for the nonlinear constraints become large), SNOPT enters “elastic” mode and solves the
problem

NP(7) mi;ligrbize f(@) + el (v+w)
x
subject to | < | F(z)—v+w | <u, v>0, w>0,
Gz

where 7 is a nonnegative parameter (the elastic weight), and f(x) + veT (v + w) is called
a composite objective. If v is sufficiently large, this is equivalent to minimizing the sum of
the nonlinear constraint violations subject to the linear constraints and bounds. A similar
¢y formulation of NP is fundamental to the S¢; QP algorithm of Fletcher [4]. See also Conn

1.

8 User’s Guide for SNOPT

3. Identifying structure in the objective and constraints

Consider the following nonlinear optimization problem with four variables z = (u,v, z,w):

minimize (u +v + 2)% + 32 + 5w

subject to w2+ + 2 =2
ut + vt + w=4

2u + 4v >0

z2>0 w > 0.

This problem has several characteristics that can be exploited by SNOPT:

e The objective function is nonlinear, and it is the sum of a nonlinear function of the
three variables ' = (u,v, 2) and a linear function of (potentially) all variables z.

e The first two constraints are nonlinear, and the third constraint is linear.

e Each nonlinear constraint involves the sum of a nonlinear function of the two variables
1

z" = (u,v) and a linear function of the remaining variables y" = (z,w).
The nonlinear terms are defined by user-written subroutines funobj and funcon, which
involve only z' and z', the appropriate subsets of variables.

For the objective, we define the function f(u,v,2) = (u + v + 2)? to include only the
nonlinear terms. The variables ' = (u,v, 2) are known as nonlinear objective variables, and
their dimension is specified by the snopt input parameter nnObj (= 3 here). The linear
part 3z + 5w of the objective is treated as an additional linear constraint whose row index
is specified by the input parameter i0bj (= 3 or 4 here). Thus, the full objective has the
form
f@') + e,

where z' is the first nn0Obj variables, f(z') is defined by subroutine funobj, and ¢ is a
constant vector that forms row i0bj of the full Jacobian matrix A.

Similarly for the constraints, we define a vector function F'(u,v) to include just the
nonlinear terms. In this example, F (u,v) = u? +v? and F(u,v) = u* + v*. The number of
nonlinear constraints (the dimension of F') is specified by the input parameter nnCon (= 2
here). The variables 2" = (u,v) are known as nonlinear Jacobian variables, with dimension
specified by nnJac (= 2 here). Thus, the constraint functions and the linear part of the

objective have the form
F(xll) + A2yll
(A3£L'” + A4y” ’ (3'1)

where 2" is the first nnJac variables, F'(z"") is defined by subroutine funcon, and y" contains
the remaining variables. The full Jacobian is of the form

(JE") A
i (1 4, o2

with the Jacobian of F' always appearing in the top left corner of A. The constant matrices
As, Az, A4 and the sparsity pattern of J(z") are input column-wise via the array parameters
a, ha, ka. (Elements that are identically zero need not be included.)

The inequalities I < F(z") + A2y" < uy and Iy < Azx + Agy” < uy implied by the
constraint functions (3.1) are known as the nonlinear and linear constraints respectively.
Together, these two sets of inequalities constitute the general constraints.

3. Identifying structure in the objective and constraints 9

In general, the vectors 2’ and 2" have different dimensions, but they always overlap,
in the sense that the shorter vector is always the beginning of the other. In the example,
the nonlinear Jacobian variables (u,v) are an ordered subset of the nonlinear objective
variables (u,v,w). In other cases it could be the other way round—whichever is the most
convenient—but the first way keeps J(z") smaller.

Together the nonlinear objective and nonlinear Jacobian variables comprise the nonlinear
variables. The number of nonlinear variables is therefore the larger of the dimensions of z’
and z".

3.1. Problem dimensions

The following picture illustrates the problem structure just described:

<+—— nnJac —

nnCon

n
_ _nn0bj_
(____mmObj __ "]
(______mObj_ _ |

The dimensions are all input parameters to subroutine snopt (see the next section). For
linear programs, nnCon, nnJac and nn0bj are all zero. If a linear objective term exists, i0bj
points to one of the bottom rows (nnCon < i0bj < m).

The dashed boxes indicate that a nonlinear objective function f(z') may involve either
a subset or a superset of the variables in the nonlinear constraint functions F(z"), counting
from the left. Thus, nn0bj < nnJac or vice versa.

Sometimes the objective and constraints really involve disjoint sets of nonlinear vari-
ables. We then recommend ordering the variables so that nn0bj > nnJac and z' = (2", z""),
where the objective is nonlinear in just the last vector z'"'. Subroutine funobj should set
g(j) = 0.0 for j = 1: nnJac. It should then set as many remaining gradients as possible—
preferably all!

10

User’s Guide for SNOPT

4. Subroutine snopt

Problem NP is solved by a call to subroutine snopt, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routines funobj and funcon.

6P h P P PH PP PH P

subroutine snopt (start, m, n, ne, nName,

nnCon, nnObj, nnJac,
i0bj, ObjAdd, Prob,
funcon, funobj,
a, ha, ka, bl, bu, Names,
hs, xs, pi, rc,
inform, mincw, miniw, minrw,
nS, nInf, sInf, 0bj,
cu, lencu, iu, leniu, ru, lenru,
cw, lencw, iw, leniw, rw, lenrw)
external funcon, funobj
character* (*) start
character*8 Prob
character*8 Names (nName)
integer m, n, ne, nName, nnCon, nnObj, nnJac
integer i0Obj, nS, nInf
integer inform, mincw, miniw, minrw
integer ha(ne), hs(n+m)
integer ka(n+1)

double precision 0bjAdd, sInf, Obj
double precision a(me), bl(n+m), bu(n+m)
double precision xs(n+m), pi(m), rc(n+m)

integer lencu, lencw, leniu, lenru, leniw, lenrw
characterx*8 cu(lencu), cw(lencw)
integer iu(leniu), iw(leniw)

double precision ru(lenru), rw(lenrw)

On entry:

start

is a character string that specifies how a starting basis (and certain other items)
are to be obtained.

’Cold’ requests that the CRASH procedure be used to choose an initial
basis, unless a basis file is provided via OLD BASIS, INSERT or LOAD
in the Specs file.

’Basis file’ isthesame as start = ’Cold’ but is more meaningful when a basis
file is given.

’Warm’ means that a basis is already defined in hs (probably from an earlier
call).

is m, the number of general constraints (m > 0). This is the number of rows in the
full constraint matrix A in (3.2).

Note that A must have at least one row. If your problem has no constraints, or only
upper and lower bounds on the variables, then you must include a dummy row with

4. Subroutine snopt 11

ne

nName

nnCon
nn0bj

nnJac

i0bj

ObjAdd

Prob

funcon

funobj

a(ne),

sufficiently wide upper and lower bounds. See the discussion of the parameters a,
ha and ka below.

is n, the number of variables, excluding slacks (n > 0). This is the number of
columns in A.

is the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints) (ne > 0).

is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n + m and all names must be provided.

is my, the number of nonlinear constraints (nnCon > 0).
is n}, the number of nonlinear objective variables (nnObj > 0).

is nY, the number of nonlinear Jacobian variables. If nnCon = 0, nnJac = 0. If
nnCon > (0, nnJac > 0.

says which row of A is a free row containing a linear objective vector ¢. If there is
no such vector, i0bj = 0. Otherwise, this row must come after any nonlinear rows,
so that nnCon < i0bj < m.

is a constant that will be added to the objective for printing purposes. Typically
ObjAdd = 0.0d+0

is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output BASIS files. A blank name may be used.

is the name of a subroutine that calculates the vector of nonlinear constraint func-
tions F(z) and (optionally) its Jacobian for a specified vector = (the first nnJac
elements of x(*)). funcon must be declared external in the routine that calls
snopt. For a detailed description of funcon, see §5.2.

is the name of a subroutine that calculates the objective function f(z) and (op-
tionally) its gradient for a specified vector x (the first nn0Obj elements of x(*)).
funobj must be declared external in the routine that calls snopt. For a detailed
description of funobj, see §5.1.

ha(ne), ka(n+1) define the nonzero elements of the constraint matrix A (3.2),
including the Jacobian matrix associated with nonlinear constraints. The nonzeros
are stored column-wise. A pair of values (a(k),ha(k)) contains a matrix element
and its corresponding row index, and the array ka(*) is a set of pointers to the
beginning of each column of A within a(*) and ha(*). Thus for j = 1 : n, the
entries of column j are held in a(k : I) and their corresponding row indices are in
ha(k : I), where k = ka(j) and | = ka(j +1) — 1,

Note: Every element of a(x) must be assigned a value in the calling program.

In general, elements in the nonlinear part of a(*) (see the notes below) may be
any dummy value (e.g., zero) because they are initialized at the first point that is
feasible with respect to the linear constraints.

If Derivative level = 2 or 3, the nonlinear part of a(*) may be used to define
any constant Jacobian elements. If funcon does not define all entries of gCon(*),
the missing values will be obtained from a(*).

1. It is essential that ka(l) =1 and ka(n + 1) = ne + 1.

12 User’s Guide for SNOPT

2. The Jacobian J(z) forms the top left corner of a and ha (see §3). If a Jacobian
column j (1 < j < nnJac) contains any entries a(k), ha(k) associated with
nonlinear constraints (1 < ha(k) < nnCon), those entries must come before
any entries belonging to linear constraints.

3. The row indices ha (k) for a column may be in any order, subject to Jacobian
entries appearing first. Subroutine funcon must define the Jacobian entries in
the same order.

4. If your problem has no constraints, or just bounds on the variables, you may
include a dummy “free” row with a single (zero) element by setting a(1) = 0.0,
ha(l) =1, ka(1) =1, and ka(j) = 2 for j = 2: n+ 1. This row is made “free”
by setting its bounds to be bl(n + 1) = —bigbnd and bu(n + 1) = bigbnd,
where bigbnd is typically 1.0e+20 (see next paragraph).

bl(n+m) contains the lower bounds on the variables and slacks (z, s).

The first n entries of bl, bu, hs and xs refer to the variables z. The last m entries
refer to the slacks s.

To specify a non-existent lower bound (I; = —o0), set bl(j) < —bigbnd, where
bigbnd is the Infinite Bound, whose default value is 10%°.

To fix the jth variable (say z; = 3, where |8| < bigbnd), set b1l(j) = bu(j) = 3.

To make the ith constraint an equality constraint (say s; = 3, where |3| < bigbnd),
set bl(n +14) =bu(n +1i) = g.

bu(n+m) contains the upper bounds on (z, s). To specify a non-existent upper bound (u; =
o0), set bu(j) > bigbnd. For the data to be meaningful, it is required that b1(j) <
bu(j) for all j.

Names (nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, Names is not used. The printed solution will use generic names for the
columns and row. If nName = n + m, Names(j) should contain the 8-character name
of the jth variable (j = 1:n +m). If j = n + 4, the jth variable is the ith row.

hs(n+m) sometimes contains a set of initial states for each variable z, or for each variable
and slack (z,s). See the following discussion of xs.

xs(n+m) sometimes contains a set of initial values for = or (z, s).

1. If start = ’Cold’ or ’Basis file’, and a BASIS file of some sort is to be
input (an OLD BASIS file, INSERT file or LOAD file), then hs and xs need not
be set at all.

2. Otherwise, hs(1 : n) and xs(1 : n) must be defined for a Cold start. If nothing
special is known about the problem, or if there is no wish to provide special
information, you may set hs(j) =0, xs(j) = 0.0 for all j =1 : n. All variables
will be eligible for the initial basis.

Less trivially, to say that the optimal value of variable j will probably be
equal to one of its bounds, set hs(j) = 4 and xs(j) = b1(j) or hs(j) = 5 and
xs(j) = bu(j) as appropriate.

3. For Cold starts with no basis file, a CRASH procedure is used to select an
initial basis. The initial basis matrix will be triangular (ignoring certain small
entries in each column). The values hs(j) = 0,1,2,3,4,5 have the following
meaning;:

4. Subroutine snopt 13

pi

nS

hs(j) State of variable j during CRASH
{0,1,3} | Eligible for the basis. 3 is given preference
{2,4,5} Ignored

After CRASH, columns for which hs(j) = 2 are made superbasic. Other
entries not selected for the basis are made nonbasic at the value xs(j) if
bl(j) < xs(j) < bu(j), or at the value b1(j) or bu(j) closest to xs(j). See the
description of hs below (on exit).

4. For Warm starts, all of hs(1: n+m) must be 0, 1, 2 or 3 (probably from some
previous call) and all of xs(1 : n + m) must have values.

contains an estimate of A, the vector of Lagrange multipliers (shadow prices) for
the nonlinear constraints. The first nnCon components must be defined. If nothing
is known about A, set pi(¢) = 0.0, % = 1 : nnCon.

need not be specified for Cold starts, but should retain its value from a previous
call when a Warm start is used.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-

space. They may be used to pass data or workspace to your function routines
funcon and funobj (which have the same parameters). They are not touched by
snopt.

If the function routines don’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Alternatively, you
should use the latter arrays if funcon and funobj need to access snopt’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace

for snopt.

lencw, leniw, lenrw must all be at least 500. In general, lencw = 500 is appropriate
but leniw and lenrw should be as large as possible because it is uncertain how much
storage will be needed for the basis factors. As an estimate, leniw should be about
100(m + n) or larger, and lenrw should be about 200(m + n) or larger.

Appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500. If Print level is positive, the required amounts of workspace are
printed before snopt terminates with inform = 42, 43 or 44. The values are
returned in mincw, miniw and minrw.

On exit:

hs(n+m) is the final state vector. The elements of hs have the following meaning:

hs(j) | State of variable j Usual value of xs(j)
0 nonbasic b1(j)
1 nonbasic bu(5)
2 superbasic Between b1(j) and bu(y)
3 basic ditto

Basic and superbasic variables may be outside their bounds by as much as the Minor
feasibility tolerance. Note that if scaling is specified, the feasibility tolerance
applies to the variables of the scaled problem. In this case, the variables of the
original problem may be as much as 0.1 outside their bounds, but this is unlikely
unless the problem is very badly scaled. Check the “Primal infeasibility” printed
after the EXIT message.

14

User’s Guide for SNOPT

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Minor feasibility tolerance, and there may be some nonbasics for which
xs(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

xs (n+m) is the final variables and slacks (z, s).

pi(m)

is the vector of dual variables 7 (a set of Lagrange multipliers for the general
constraints).

rc(n+m) is a vector of reduced costs, g—(A —1I)Tx, where g is the gradient of the objective

if xs is feasible (or the gradient of the Phase-1 objective otherwise). The last m
entries are .

inform reports the result of the call to snopt. Here is a summary of possible values (for a

mincw,

detailed description, see §7.6):

0 Optimal solution found, i.e., the primal and dual infeasibilities are negligible.
The problem is infeasible.
The problem is unbounded (or badly scaled).

Too many iterations.

U

Feasible solution, but the requested accuracy in the dual infeasibilities could
not be achieved.

The Superbasics 1limit is too small.
User requested termination by returning mode < —2 from funobj or funcon.
Subroutine funobj seems to be giving incorrect gradients.

Subroutine funcon seems to be giving incorrect gradients.

© 0o N O Ut

The current point cannot be improved.

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

20 Not enough storage for the basis factorization.
21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BAGIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.

42 Not enough 8-character workspace to solve the problem.

43 Not enough integer workspace to solve the problem.

44 Not enough real workspace to solve the problem.

miniw, minrw say how much character, integer and real storage is needed to solve

the problem. If SNOPT terminates because of insufficient storage (inform = 42, 43
or 44), these values may be used to define better values of lencw, leniw or lenrw.

If inform = 42, the work array cw(lencw) was too small. snopt may be called
again with lencw suitably larger than mincw.

4. Subroutine snopt 15

nS

If inform = 43 or 44, the work arrays iw(leniw) or rw(lenrw) are too small.
snopt may be called again with leniw or lenrw suitably larger than miniw or
minrw. (The bigger the better, since it is not certain how much storage the basis
factors need.)

is the final number of superbasic variables.

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside

Obj

their bounds by more than the Feasibility tolerance.

If the linear constraints are infeasible, xs minimizes the sum of the infeasibilities
of the linear constraints subject to the upper and lower bounds being satisfied. In
this case nInf gives the number of components of Gz lying outside their upper or
lower bounds. The nonlinear constraints are not evaluated.

Otherwise, xs minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of F'(z) lying outside their upper
or lower bounds.

is the value of the objective function, including the constant 0bjAdd. If nInf = 0,
0Obj includes both the linear and nonlinear objective if any. If nInf > 0, Obj is just
the linear objective if any.

16 User’s Guide for SNOPT

5. User-supplied subroutines

The user must provide subroutines to define the nonlinear parts of the objective function
and nonlinear constraints. They are passed to snopt as external parameters funobj and
funcon. (A dummy subroutine must be provided if the objective or constraints are purely
linear.)

Be careful when coding the call to snopt: the parameters are ordered alphabetically as
funcon, funobj. The first call to each function routine is also in that order.

In general, these subroutines should return all function and gradient values on every
entry except perhaps the last. This provides maximum reliability and corresponds to the
default setting, Derivative level = 3.

In practice it is often convenient not to code gradients. SNOPT is able to estimate
gradients by finite differences, by making a call to funobj or funcon for each variable z;
whose partial derivatives need to be estimated. Howewver, this reduces the reliability of the
optimization algorithms, and it can be very expensive if there are many such variables x;.

As a compromise, SNOPT allows you to code as many gradients as you like. This option
is implemented as follows. Just before a function routine is called, each element of the
gradient array is initialized to a specific value. On exit, any element retaining that value
must be estimated by finite differences.

Some rules of thumb follow.

1. For maximum reliability, compute all function and gradient values.

2. If the gradients are expensive to compute, specify Nonderivative linesearch and
use the input parameter mode to avoid computing them on certain entries. (Don’t
compute gradients if mode = 0.)

3. If not all gradients are known, you must specify Derivative level < 3. You should
still compute as many gradients as you can. (It often happens that some of them are
constant or even zero.)

4. Again, if the known gradients are expensive, don’t compute them if mode = 0.
5. Use the input parameter nState to test for special actions on the first or last entries.

6. While the function routines are being developed, use the Verify option to check the
computation of gradient elements that are supposedly known. The Start and Stop
options may also be helpful.

7. The function routines are not called until the linear constraints and bounds on z are
satisfied. This helps confine z to regions where the nonlinear functions are likely to
be defined. However, be aware of the Minor feasibility tolerance if the functions
have singularities,

8. Set mode = —1 if the functions are undefined. The linesearch will shorten the step and
try again.

9. Set mode < —2 if you want SNOPT to stop.

5. User-supplied subroutines 17

5.1. Subroutine funobj

This subroutine must calculate the nonlinear objective function f(z) and (optionally) its

gradient

g(z), where z is the current value of the objective variables z’. The jth component

of the gradient is 9f /0x;.

$
$

subroutine funobj(mode, nn0bj,
x, f0bj, gObj, nState,
cu, lencu, iu, leniu, ru, lenru)

integer mode, nnObj, nState
double precision f0bj
double precision x(nnObj), gObj(nnlObj)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)

double precision ru(lenru)

On entry:

mode

nn0bj

x (nn0bj

nState

indicates whether £0bj or gObj or both must be assigned during the present call of
funobj (0 < mode < 2).

This parameter can be ignored if Derivative linesearch is selected (the default)
and if Derivative level =1 or 3. In this case, mode will always have the value 2,
and f0bj and all elements of gObj must be assigned.

Otherwise, snopt will call funobj with mode = 0, 1 or 2. You may test mode to
decide what to do:
o If mode = 2, assign £0bj and the known components of gObj.

e If mode = 1, assign the known components of gObj; £0bj is not required and
is ignored.

e If mode = 0, only £0bj need be assigned; gObj is ignored.

is the number of variables involved in f(z) (0 < nnObj < m). These must be the
first nn0bj variables in the problem.

) contains the nonlinear objective variables x. The array x must not be altered.

indicates the first and last calls to funobj.
If nState = 0, there is nothing special about the current call to funobj.

If nState = 1, SNOPT is calling your subroutine for the first time. Some data
may need to be input or computed and saved. Note that if there are nonlinear
constraints, the first call to funcon will occur before the first call to funobj.

If nState > 2, SNOPT is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. Note again that if
there are nonlinear constraints, the last call to funcon will occur before the last call
to funobj.

In general, the last call is made with nState = 2+ inform, where inform indicates
the status of the final solution. In particular, if nState = 2, the current x is optimal;
if nState = 3, the problem appears to be infeasible; if nState = 4, the problem

18

User’s Guide for SNOPT

appears to be unbounded; and if nState = 5, the iterations limit was reached. In
some cases, the solution may be nearly optimal if nState = 11; this value occurs if
the linesearch procedure was unable to find an improved point.

If the nonlinear functions are expensive to evaluate, it may be desirable to do
nothing on the last call, by including a statement of the form

if (nState .ge. 2) return

at the start of the subroutine.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-

space provided to snopt. They may be used to pass information into the function
routines and to preserve data between calls.

In special applications the functions may depend on some of the internal variables
stored in snopt’s workspace arrays cw, iw, rw. For example, the 8-character problem
name Prob is stored in cw(51), and the dual variables are stored in rw(1xMul)
onward, where 1xMul = iw(316). These will be accessible to both funobj and
funcon if snopt is called with parameters cu, iu, ru the same as cw, iw, rw.

If you still require user workspace, elements
rw(501:maxru) and rw(maxrw+1l:lenru)

are set aside for this purpose, where maxru = iw(2). Similarly for workspace in cw
and rw. (See the Total and User workspace options.)

On exit:

mode

£0bj

may be used to indicate that you are unable or unwilling to evaluate the objective
function at the current z. (Similarly for the constraint functions.)

During the linesearch, the functions are evaluated at points of the form z = xj +apy
after they have already been evaluated satisfactorily at zy. At any such a, if you set
mode to —1, SNOPT will evaluate the functions at some point closer to zj (where
they are more likely to be defined).

If for some reason you wish to terminate solution of the current problem, set mode
to a negative value (other than —1).

must contain the computed value of f(z) (except perhaps if mode = 1).

g0bj (nn0bj) must contain the known components of the gradient vector g(z), i.e., g0bj(j)

contains the partial derivative 0f/0x; (except perhaps if mode = 0).

5. User-supplied subroutines 19

5.2. Subroutine funcon

This subroutine must compute the nonlinear constraint functions F'(z) and (optionally)
their gradients J(z), where x is the current value of the Jacobian variables z". The jth
column of the Jacobian matrix J(z) is the vector F/0z;.

Gradients are stored column-wise in the output array gCon.

Recall that J(z) is the top left corner of a larger matrix A that is stored column-wise in
snopt’s input arrays a, ha, ka (see (3.2) and §§3.1,4). Jacobian elements must be stored in
gCon in the same order as the corresponding parts of a, ha, ka.

For small problems (or large dense ones) it is convenient to treat the Jacobian as a dense
matrix and declare gCon as a two-dimensional array gCon(*,*) (which is stored column-
wise in Fortran). It is then simple to compute the Jacobian by rows or by columns. For
problems with sparse Jacobians, it is essential to use a one-dimensional array gCon(*) in
order to conserve storage. Thus, funcon should use just one of the declarations

double precision gCon(nnCon,nnJjac)
double precision gCon(neJac)

according to convenience.

subroutine funcon(mode, nnCon, nnJac, nelJac,

$ x, fCon, gCon, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnCon, nnJac, neJac, nState

double precision x(mnJac), fCon(nnCon)

x Choose ONE of the following:

* double precision gCon(nnCon,nnJac)

* double precision gCon(neJac)
integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)

double precision ru(lenru)

On entry:

mode indicates whether fCon or gCon or both must be assigned during the present call of
funcon (0 < mode < 2).

This parameter can be ignored if Derivative linesearch is selected (the default)
and if Derivative level = 2 or 3. In this case, mode will always have the value
2, and all elements of fCon and gCon must be assigned (except perhaps constant
elements of gCon).

Otherwise, snopt will call funcon with mode = 0, 1 or 2. You may test mode to
decide what to do:
e If mode = 2, assign fCon and the known components of gCon.

e If mode = 1, assign the known components of gCon; fCon is not required and
is ignored.

e If mode = 0, only £Con need be assigned; gCon is ignored.

20 User’s Guide for SNOPT

nnCon is the number of nonlinear constraints (nnCon > 0). These must be the first nnCon
constraints in the problem.

nnJac is the number of variables involved in F(z) (0 < nnJac < n). These must be the
first nnJac variables in the problem.

neJac is the value nnCon*nnJac.
x(nnJac) contains the nonlinear Jacobian variables x. The array x must not be altered.
nState is used as in funobj.

cu(lencu), iu(leniu), ru(lenru) are the same as in funobj.

On exit:

fCon(nnCon) contains the computed constraint vector F(z) (except perhaps if mode = 1).

gCon(nnCon,nnJac) or gCon(nelJac) contains the computed Jacobian J(z) (except per-
haps if mode = 0).

These gradient elements must be stored in gCon in exactly the same positions as
implied by the definitions of snopt’s arrays a, ha, ka. There is no internal check
for consistency (except indirectly via the Verify option), so great care is essential.

mode may be set as in funobj.

5.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (Derivative level = 2 or 3),
any constant elements may be given to snopt in the array a if desired. The Jacobian array
gCon are initialized from the appropriate elements of a. If any are constant and have the
correct value, funcon need not reassign them in gCon.

Note that constant nonzero elements do affect £Con. Thus, if J;; is assigned correctly
in a(*) and is constant, a linear term gCon(%,j)*x(j) or gCon (1) *x(j) must be added to
£Con (i) (depending on whether gCon is a two- or one-dimensional array).

Remember, if Derivative level < 2, unassigned elements of gCon are not treated as
constant—they are estimated by finite differences at significant expense.

5.4. Example

Here we give the subroutines funobj and funcon for the example of §3, repeated here for
convenience:
minimize (z1 + 72 + 73)? + 323 + 524

subject to 2+ 33+ 3 =2
ri + x4 + x4 =4

221 + 4xo >0

I3 >0 T4 Z 0.

This problem has 4 variables, 3 nonlinear objective variables, 2 nonlinear Jacobian variables,
2 nonlinear constraints and 1 linear constraint. The objective has some linear terms that
we include as an extra “free row” (with infinite bounds). The calling program must assign
the values

5. User-supplied subroutines 21

m =
n =
nnCon
nn0Obj
nnJac
i0bj

]
BN W N DD

Subroutine funobj works with the nonlinear objective variables (z1, z2, x3). Since z3 oc-
curs only linearly in the constraints, we have placed it after the nonlinear Jacobian variables
(z1,x2)-

For interest, we test mode to economize on gradient evaluations (even though they are
cheap here). Note that No derivative linesearch would have to be specified, otherwise
all entries would have mode = 2.

subroutine funobj(mode, nnObj,

$ x, f0bj, gObj, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnObj, nState

double precision f0Obj
double precision x(nn0bj), gObj(nn0bj)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)

double precision ru(lenru)

Toy NLP problem from the SNOPT User’s Guide.

double precision sum

sum = x(1) + x(2) + x(3)

if (mode .eq. 0 .or. mode .eq. 2) then
£0bj = sum¥sum

end if

if (mode .eq. 1 .or. mode .eq. 2) then

sum = 2.0d+0*sum
g0bj(1) = sum
g0obj(2) = sum
glbj(3) = sum
end if
* end of funobj for toy NLP.
end

Subroutine funcon involves only (x1,%2). For convenience we treat the Jacobian as a
dense matrix. In Fortran it is preferable to access (large) two-dimensional arrays column-
wise, as shown.

Since funcon is called before funobj, we test nState here to print a message on the first
and last entries.

22 User’s Guide for SNOPT
subroutine funcon(mode, nnCon, nnJac, nelac,
$ x, fCon, gCon, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnCon, nnJac, neJac, nState
double precision x(nnJac), fCon(nnCon), gCon(nnCon,nnJac)
integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
double precision ru(lenru)
Toy NLP problem from the SNOPT User’s Guide.
integer nout
nout =9
* First entry. Print something.
* _____ ——— ——— [y
if (nState .eq. 1) then
if (nout .gt. 0) write(nout, ’(/a)’) ’ This is problem Toy’
end if
if (mode .eq. 0 .or. mode .eq. 2) then
fCon(1) = x(1)*%2 + x(2)**2
fCon(2) = x(1)**%4 + x(2)**4
end if
if (mode .ge. 1) then
* Jacobian elements for column 1.
gCon(1,1) = 2.0d4+0*x(1)
gCon(2,1) = 4.0d+0*x (1) **3
* Jacobian elements for column 2.
gCon(1,2) = 2.0d4+0*x(2)
glon(2,2) = 4.0d+0%x(2)**3
end if
Last entry.
if (nState .ge. 2) then
if (nout .gt. 0) write(mout, ’(/a)’) ’ Finished problem Toy’
end if
* end of funcon for toy NLP

end

6. The SPECS file 23

6. The SPECS file

The performance of SNOPT is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. (The defaults are
given in the next section.) For special situations it is possible to specify non-standard values
for some or all of the options, using data in the following general form:

Begin SNOPT options

Iterations limit 500
Minor feasibility tolerance 1.0e-7
Solution Yes

End SNOPT options

We call such data a SPECS file because it specifies various options. The file starts with the
keyword Begin and ends with End. Each line specifies a single option in free format, using
one or more items as follows:

1. A keyword (required for all options).
2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*), which may appear anywhere on a line. All subsequent characters on the line
are ignored.

It may be useful to include a comment on the first (Begin) line of the file. This line is
echoed to the SUMMARY file, and appears on the screen in an interactive environment.

Most of the options described in the next section should be left at their default values for
any given model. If experimentation is necessary, we recommend changing just one option
at a time.

6.1. SPECS file checklist and defaults

The following example SPECS file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on €, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(€ ~ 2.22 x 1071%). Similar values would apply to any machine having about 15 decimal
digits of precision.

BEGIN checklist of SPECS file parameters and their default values

* Printing
Major print level
Minor print level
Print file
Summary file
Print frequency
Summary frequency
Solution Yes

* Suppress options listing

1-line major iteration log
no minor iteration log

typically the screen

minor iterations log on PRINT file
minor iterations log on SUMMARY file
on the PRINT file

default: options are listed

= O O O
* K K K K ¥ ¥ ¥

24

User’s Guide for SNOPT

Convergence Tolerances

Major feasibility tolerance
Major optimality tolerance
Minor feasibility tolerance
Minor optimality tolerance

Derivative checking
Verify level

Start objective
Stop objective
Start constraint
Stop

check
check
check
check

at ¢
at ¢
at ¢
constraint at c
Scaling

Scale option

Scale tolerance

Scale Print
Other Tolerances
Crash
Linesearch tolerance

LU factor tolerance

LU update tolerance

LU singularity tolerance

tolerance

Pivot tolerance

QP subproblems
Crash option
Elastic weight
Iterations limit
Partial price

SQP method
Minimize

* Feasible point
* Feasible Exit

Major iterations limit
Minor iterations limit
Major step limit
Superbasics limit
Derivative level
Derivative linesearch
Function precision
Difference interval
Central difference interval
Violation limit
Unbounded step size
Unbounded objective

ol 1
ol
ol 1
ol

o o
O =

10.0
10.0
2.0e-6
3.7e-11

100.0
10000

1000
500
2.0
500

3.0e-13
5.5e-7
6.7e-5
10.0
1.0e+18
1.0e+15

Hessian approximation

Hessian Full memory
Hessian Limited memory
Hessian frequency 999999
Hessian updates 20
Hessian flush 999999

* X K K

target nonlinear constraint violation

target complementarity gap
for satisfying the QP bounds
target value for reduced gradients

cheap check on gradients

* linear constraints and variables

* default: scales are not printed

* O X K X K

* K X ¥

*OX K K K K X X K K K K K ¥ ¥

smaller for more accurate search
limits size of multipliers in L
the same during updates

i

all slack initial basis

used only during elastic mode
or 20m if that is more

10 for large LPs

(opposite of Maximize)
(alternative to Max or Min)
(get feasible before exiting)
or m if that is more

or 3m if that is more

or ny + 1 if that is less
assumes all gradients are known

€% (almost full accuracy)

1
(Function precision)2

1
(Function precision)3

unscaled constraint violation limit

default if n <75

default if n > 75

for full Hessian (never reset)
for limited memory Hessian
no flushing

6. The SPECS file 25

* Frequencies
Check frequency
Expand frequency
Factorization frequency
Save frequency

* BASIS files
OLD BASIS file
NEW BASIS file
BACKUP BASIS file
INSERT file
PUNCH file
LOAD file
DUMP file
SOLUTION file

* Partitions of cw, iw, rw
Total character workspace
Total integer workspace

Total real workspace

User character workspace
User integer workspace
User real workspace

End of SPECS file checklist

60
10000
50
100

O OO O OO oo

lencw
leniw
lenrw
500
500
500

* X K K

¥ O¥ K K K ¥ ¥ ¥

LR I

test row residuals ||Az — s||
for anti-cycling procedure
100 for LPs

save basis map

input basis map

output basis map

output basis map

input in industry format
output INSERT data

input names and values
output LOAD data

different from printed solution

26 User’s Guide for SNOPT

6.2. Subroutine snlnit

Subroutine snInit must be called before any other SNOPT routines. It defines the PRINT
and SUMMARY files, prints a title on both files, and sets all user options to be undefined.
(snopt will later check the options and set undefined ones to default values.)

subroutine snInit(iPrint, iSumm,

$ cw, lencw, iw, leniw, rw, lenrw)
integer iPrint, iSumm

integer lencw, leniw, lenrw

character*8 cw(lencw)

integer iw(leniw)

double precision rw(lenrw)

On entry:
iPrint defines a unit number for the PRINT file. Typically iPrint = 9.

On some systems, the file may need to be opened before snInit is called. If
iPrint < 0, there will be no PRINT file output.

iSumm defines a unit number for the SUMMARY file. Typically iSumm = 6. (In an interac-
tive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before snInit is called. If iSumm <
0, there will be no SUMMARY file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to snopt
and other routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined.

6. The SPECS file 27

6.3. Subroutine snSpec

Subroutine snSpec may be called to input a SPECS file (to specify options for a subsequent
call of snopt).

subroutine snSpec(iSpecs, inform,

$ cw, lencw, iw, leniw, rw, lenrw)
integer iSpecs, inform

integer lencw, leniw, lenrw

character*8 cw(lencw)

integer iw(leniw)

double precision rw(lenrw)

On entry:
iSpecs is a unit number for the SPECS file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before snSpec is called.

On exit:
cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

inform is 0 if the SPECS file was successfully read. Otherwise, it returns the number of
errors encountered.

28 User’s Guide for SNOPT

6.4. Subroutines snset, snseti, snsetr

These routines specify a single option that might otherwise be defined in one line of a SPECS
file.

subroutine snset (buffer, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
subroutine snseti(buffer, ivalue, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
subroutine snsetr(buffer, rvalue, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
character* (%) buffer

integer ivalue, iPrint, iSumm, inform

double precision rvalue

integer lencw, leniw, lenrw

character*8 cw(lencw)

integer iw(leniw)

double precision rw(lenrw)

On entry:

buffer is a string to be decoded. Use snset if the string contains all relevant data. For
example, if the value 1000 is known at compile time, say

call snset (’Iteratiomns 1000°, iPrint, iSumm, inform, ...)
Restriction: len(buffer) < 72 (snset) or < 55 (snseti and snsetr).

ivalue is an integer value associated with the keyword in buffer. Use snseti if it is
convenient to define the value at run time. For example, the following allows the
iterations limit to be computed:

itnlim = 1000
if (m .gt. 500) itnlim = 8000
call snseti(’Iterations’, itnlim, iPrint, iSumm, inform, ...)

rvalue is a real value associated with the keyword in buffer. The following illustrates how
the LU stability tolerance could be defined at run time:

factol = 100.0d4+0
if (illcon) factol = 5.04+0
call snsetr(’LU factor tol’, factol, iPrint, iSumm, inform, ...)

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

inform should be 0 for the first call to the snset routines.

On exit:
inform is the number of errors encountered so far.

cw(lencw), iw(leniw), rw(lenrw) record the specified option.

6. The SPECS file 29

6.5. Subroutines sngetc, sngeti, sngetr

These routines obtain the current value of a single option.

subroutine sngetc(buffer, cvalue, inform,

$ cw, lencw, iw, leniw, rw, lenrw)
subroutine sngeti(buffer, ivalue, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
subroutine sngetr(buffer, rvalue, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
character* (%) buffer
character*8 cvalue
integer ivalue, inform
double precision rvalue
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)

double precision rw(lenrw)

On entry:
buffer is a string to be decoded. Restriction: len(buffer) < 72.

inform should be 0 for the first call to the snget routines.

On exit:

cvalue is a string associated with the keyword in buffer. Use sngetc to obtain the names

For example, if ..., say
call sngetc(’Bounds’, inform, ...)
ivalue is an integer value associated with the keyword in buffer. Example:
call sngeti(’Iterations limit’, itnlim, inform, ...)
rvalue is a real value associated with the keyword in buffer. Example:
call sngetr(’LU factor tol’, factol, inform, ...)
inform is the number of errors encountered so far.

cw(lencw), iw(leniw), rw(lenrw) contain the required option value.

30 User’s Guide for SNOPT

6.6. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and
a description of their effect.

Backup Basis file i Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a
NEW BAGIS file is being saved every 100 iterations, and that SNOPT is about to save such
a basis at iteration 2000. It is conceivable that the run may be interrupted during the next
few milliseconds (in the middle of the save). In this case the basis file will be corrupted and
the run will have been essentially wasted.

To eliminate this risk, both a NEW BAGSIS file and a BACKUP BAGSIS file may be specified.
The following would be suitable for the above example:

OLD BASIS file 11 (or 0)
BACKUP BASIS file 11
NEW BASIS file 12
Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a usable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but
there is no need for a further BACKUP BASIS. In the above example, if an optimum solution
is found at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will
correspond to iteration 2050, but the last basis saved on file 11 will be the one for iteration
2000.

Central difference interval r Default = €5 ~ 6.0e-6

When Derivative level < 3, the central-difference interval r is used near an optimal
solution to obtain more accurate (but more expensive) estimates of gradients. Twice as
many function evaluations are required compared to forward differencing. The interval used
for the jth variable is h; = (1 + |z;|). The resulting gradient estimates should be accurate
to O(r?), unless the functions are badly scaled.

Check frequency i Default = 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made
to see if the current solution z satisfies the general linear constraints (including linearized
nonlinear constraints, if any). The constraints are of the form Az — s = b, where s is the
set of slack variables. To perform the numerical test, the residual vector r = b — Ax + s
is computed. If the largest component of 7 is judged to be too large, the current basis is
refactorized and the basic variables are recomputed to satisfy the general constraints more
accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Crash option 7 Default = 0
Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix (A — I). The Crash option ¢ determines which

6. The SPECS file 31

rows and columns of A are eligible initially, and how many times CRASH is called. Columns
of —I are used to pad the basis where necessary.

i Meaning
0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the
matrix A.

2 CRASH is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the iteration proceeds with simplex iterations until
the linear constraints are satisfied. The Jacobian is then evaluated for the first major
iteration and CRASH is called again to find a triangular basis in the nonlinear rows
(retaining the current basis for linear rows).

3 CRASH is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call
treats nonlinear rows before the first major iteration.

If i > 1, certain slacks on inequality rows are selected for the basis first. (If ¢ > 2,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If amayx is the largest element in column j, other nonzeros a;;
in the column are ignored if |a;j| < amax X 7. (To be meaningful, r should be in the range
0<r<1)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor
tolerance; i.e., a tridiagonal matrix with entries —1, 4, —1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance r for some value of r > 1/4.

Derivative level 7 Default = 3

This specifies which nonlinear function gradients are known analytically and will be supplied
to SNOPT by the user subroutines funobj and funcon.

i Meaning
3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gra-
dient are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

32 User’s Guide for SNOPT

0 Some components of the objective gradient are unknown and some of the constraint
gradients are unknown.

The value 7 = 3 should be used whenever possible. It is the most reliable and will usually
be the most efficient.

If i = 0 or 2, SNOPT will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine funobj. However, it
could increase the total run-time substantially (since a special call to funobj is required
for each missing element), and there is less assurance that an acceptable solution will be
located. If the nonlinear variables are not well scaled, it may be necessary to specify a
nonstandard Difference interval (see below).

Ifi =0or 1, SNOPT will estimate missing elements of the Jacobian. For each column of
the Jacobian, one call to funcon is needed to estimate all missing elements in that column,
if any. If Jacobian = sparse and the sparsity pattern of the Jacobian happens to be

k% £
? 2
2
% %

where * indicates known gradients and 7 indicates unknown elements, SNOPT will use one
call to funcon to estimate the missing element in column 2, and another call to estimate
both missing elements in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many
calls to funobj and funcon are then needed. (This is not under the user’s control.)

Derivative linesearch Default
Nonderivative linesearch
No derivative linesearch

At each major iteration a linesearch is used to improve the merit function. A Derivative
linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step ay. If some analytic derivatives are not provided,
or a Nonderivative linesearch is specified, SNOPT employs a linesearch based upon
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is
recommended that the default be used if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the functions,
a nonderivative linesearch may give a significant decrease in computation time.

If Nonderivative linesearch is selected, SNOPT signals the evaluation of the line-
search by calling funobj and funcon with mode = 0. Once the linesearch is completed, the
problem functions are called again with mode = 2. If the potential savings provided by a
nonderivative linesearch are to be realized, it is essential that funobj and funcon be coded
so that the derivatives are not computed when mode = 0.

Difference interval hy Default = €!/2 x 1.5e-8

This alters the interval h; that is used to estimate gradients by forward differences in the
following circumstances:

e In the initial (“cheap”) phase of verifying the objective gradients.

6. The SPECS file 33

e For verifying the constraint gradients.
e For estimating missing objective gradients.
e For estimating missing Jacobian elements.

In the last three cases, a derivative with respect to x; is estimated by perturbing that com-
ponent of = to the value z; +hy(1+|z;|), and then evaluating F(z) or f(x) at the perturbed
point. The resulting gradient estimates should be accurate to O(h1) unless the functions
are badly scaled. Judicious alteration of h; may sometimes lead to greater accuracy.

Dump file i Default = 0

If 4 > 0, the last solution obtained will be output to the file with unit number i in the format
described in Section 8.3.

Elastic weight w Default = 100

This keyword determines the initial weight - associated with problem NP(v).

At any given major iteration k, elastic mode is started if the QP subproblem is infeasible,
or the QP dual variables are larger in magnitude than w(1 + ||g(zk)||2), where g is the
objective gradient. In either case, the QP is re-solved in elastic mode with v = w(1 +
lg(@k)ll2)-

Thereafter, « is increased (subject to a maximum allowable value) at any point that is
optimal for problem NP(), but not feasible for NP. After the rth increase, v = w10"(1 +
llg(zk1)|]2), where z; is the iterate at which v was first needed.

Expand frequency i Default = 10000

This option is part of the EXPAND anti-cycling procedure [9] designed to make progress
even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Minor feasibility tolerance is d. Over a period of ¢ iterations, the tolerance actually
used by SNOPT increases from 0.56 to § (in steps of 0.54/1).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a vertex
of the feasible region.) Thus, zero steps are allowed if there is more than one superbasic
variable, but otherwise positive steps are enforced.

Increasing ¢ helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

Factorization frequency k Default = 50
At most k basis changes will occur between factorizations of the basis matrix.
e With linear programs, the basis factors are usually updated every iteration. The

default k is reasonable for typical problems. Higher values up to k = 100 (say) may
be more efficient on problems that are extremely sparse and well scaled.

34 User’s Guide for SNOPT

o When the objective function is nonlinear, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. If necessary the basis
will be refactorized before the limit of k£ updates is reached.

Feasibility tolerance t Default = 1.0e-6
see Minor feasibility tolerance

Feasible point only

This options means “Ignore the objective function” while finding a feasible point for the
linear and nonlinear constraints. It can be used to check that the nonlinear constraints are
feasible without altering the call to snopt.

Feasible exit
Infeasible exit ok Default

If SNOPT is about to terminate with nonlinear constraint violations, Feasible exit re-
quests further effort to satisfy the nonlinear constraints while ignoring the objective func-
tion.

Function precision €R Default = %8 ~ 3.7e-11

The relative function precision €g is intended to be a measure of the relative accuracy
with which the nonlinear functions can be computed. For example, if f(z) is computed as
1000.56789 for some relevant z and if the first 6 significant digits are known to be correct,
the appropriate value for eg would be 1.0e-6.

(Ideally the functions f(z) or F;(z) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, eg should be the absolute precision. For example,
if f(z) = 1.23456789e-4 at some point and if the first 6 significant digits are known to be
correct, the appropriate value for eg would be 1.0e-10.)

e The default value of eg is appropriate for simple analytic functions.

e In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate Function precision may lead to savings,
by allowing the linesearch procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Hessian Full memory Default = Full if ny <75
Hessian Limited memory

These options select the method for storing and updating the approximate Hessian. (SNOPT
uses a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is
applied after each major iteration.)

If Hessian Full memory is specified, the approximate Hessian is treated as a dense
matrix and the BFGS updates are applied explicitly. This option is most efficient when the
number of nonlinear variables 11 is not too large (say, less than 75). In this case, the storage
requirement is fixed and one can expect 1-step Q-superlinear convergence to the solution.

6. The SPECS file 35

Hessian Limited memory should be used on problems where n is very large. In this
case a limited-memory procedure is used to update a diagonal Hessian approximation H,
a limited number of times. (Updates are accumulated as a list of vector pairs. They are
discarded at regular intervals after H, has been reset to their diagonal.)

Hessian frequency i Default = 999999

If Hessian Full is selected and 4 BFGS updates have already been carried out, the Hessian
approximation is reset to the identity matrix. (For certain problems, occasional resets may
improve convergence, but in general they should not be necessary.)

Hessian Full memory and Hessian frequency = 20 have a similar effect to Hessian
Limited memory and Hessian updates = 20 (except that the latter retains the current
diagonal during resets).

Hessian updates i Default = 20

If Hessian Limited memory is selected and i BFGS updates have already been carried out,
all but the diagonal elements of the accumulated updates are discarded and the updating
process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate
Hessian. However, the more vectors stored, the greater the cost of each QP iteration. The
default value is likely to give a robust algorithm without significant expense, but faster
convergence can sometimes be obtained with significantly fewer updates (e.g., i = 5).

Insert file f Default = 0

If f > 0, this references a file containing basis information in the format of Section 8.2.
e The file will usually have been output previously as a PUNCH file.

e The file will not be accessed if an OLD BASIS file is specified.

Iterations limit k Default = max{10000,20m}

This is the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations.

Infinite Bound size r Default = 1.0e+20

If » > 0, r defines the “infinite” bound BigBnd in the definition of the problem constraints.
Any upper bound greater than or equal to BigBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to —BigBnd). If r < 0, the default value is
used.

Linesearch tolerance t Default = 0.9

This controls the accuracy with which a steplength will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the
merit function is identified. This parameter determines the accuracy to which this target
value is approximated.

e t must be a real value in the range 0.0 <t < 1.0.

36 User’s Guide for SNOPT

o The default value t = 0.9 requests just moderate accuracy in the linesearch.

e If the nonlinear functions are cheap to evaluate, a more accurate search may be ap-
propriate; try ¢ = 0.1, 0.01 or 0.001. The number of major iterations might decrease.

e If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. If all gradients are known, try t = 0.99. (The number of major iterations
might increase, but the total number of function evaluations may decrease enough to
compensate.)

o If not all gradients are known, a moderately accurate search remains appropriate.
Each search will require only 1-5 function values (typically), but many function calls
will then be needed to estimate missing gradients for the next iteration.

Load file f Default = 0
If f > 0, this references a file containing basis information in the format of Section 8.3.
e The file will usually have been output previously as a DUMP file.

e The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

Log frequency k Default = 1
see Print frequency

LU factor tolerance 1 Default = 100.0 (LP) or 5.0 (NLP)
LU update tolerance) Default = 10.0 (LP) or 5.0 (NLP)

These tolerances affect the stability and sparsity of the basis factorization B = LU during
refactorization and updating, respectively. They must satisfy r1, 7o > 1.0. The matrix L is
a product of matrices of the form

1

po 1)’

where the multipliers p satisfy || < r;. Smaller values of r; favor stability, while larger
values favor sparsity. The default values usually strike a good compromise.

e For large and relatively dense problems, r1 = 5.0 (say) may give a useful improvement
in stability without impairing sparsity to a serious degree.

e For certain very regular structures (e.g., band matrices) it may be necessary to reduce
r1 and/or ry in order to achieve stability. For example, if the columns of A include a
submatrix of the form

4 -1
-1 4 -1
-1 4 -1
-1 4 -1
-1 4

both r; and 72 should be in the range 1.0 < r; < 4.0.

6. The SPECS file 37

LU density tolerance r1 Default = 0.6
LU singularity tolerance) Default = €2/ ~ 3.7e-11

The density tolerance r is used during LU factorization of the basis matrix. Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis are
altered appropriately. At any stage, if the density of the remaining matrix exceeds r1, the
Markowitz strategy for choosing pivots is terminated. The remaining matrix is factored by
a dense LU procedure. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance r» helps guard against ill-conditioned basis matrices. When
the basis is refactorized, the diagonal elements of U are tested as follows: if |Uj;| < ry or
|U;j| < remax;|U;;|, the jth column of the basis is replaced by the corresponding slack
variable. (This is most likely to occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly
singular. (For example, a whole row of the Jacobian could be zero at an optimal solution.)
Before exact singularity occurs, the basis could become very ill-conditioned and the opti-
mization could progress very slowly (if at all). Setting a larger tolerance ro = 1.0e-5, say,
may help cause a judicious change of basis.

Major feasibility tolerance €r Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied. The default value
of 1.0e-6 is appropriate when the linear and nonlinear constraints contain data to about
that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy

rowerr = max viol;/||(z,s)|| < e, (6.1)
K2

where viol; is the violation of the ith nonlinear constraint (¢ = 1 : nnCon).

In the major iteration log, rowerr appears as the quantity labeled “Feasibl”. If some
of the problem functions are known to be of low accuracy, a larger Major feasibility
tolerance may be appropriate.

Major optimality tolerance €4 Default = 1.0e-6
This specifies the final accuracy of the dual variables. On successful termination, SNOPT
will have computed a solution (z,s,) such that

maxgap = max gap,/||7|| < eq, (6.2)
J

where gap; is an estimate of the complementarity gap for variable j (j = 1:n +m). The

gaps are computed from the final QP solution using the reduced gradients d; = g; — 7’ a;
(where g; is the jth component of the objective gradient, a; is the associated column of the
constraint matrix (A —I), and 7 is the set of QP dual variables):

d; min{z; —1;,1} if d; > 0;
ap. =
8°P; —d; min{u; —z;,1} ifd; <0.

In the major iteration log, maxgap appears as the quantity labeled “Optimal”.

38 User’s Guide for SNOPT

Major iterations limit k Default = max{1000, m}

This is the maximum number of major iterations allowed. It is intended to guard against
an excessive number of linearizations of the constraints.

Major print level D Default = 00001

This controls the amount of output to the PRINT and SUMMARY files each major iteration.
Major print level 1 gives normal output for linear and nonlinear problems, and Major
print level 11 gives addition details of the Jacobian factorization that commences each
major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is
not strictly binary since the summary line is printed whenever JFDXbs > 1).

b BASIS statistics, i.e., information relating to the basis matrix whenever it is refactor-
ized. (This output is always provided if JFDXbs > 10).

Zy, the nonlinear variables involved in the objective function or the constraints.

X

D mg, the dual variables for the nonlinear constraints.

F F(x), the values of the nonlinear constraint functions.
J

J(z), the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each major it-
eration. Column j will be preceded by the value of the corresponding variable z; and a
key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there
is no reason to specify X=1 unless the objective contains more nonlinear variables than the
Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that z3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4.
Major print level O suppresses most output, except for error messages.

Major step limit T Default = 2.0

This parameter limits the change in = during a linesearch. It applies to all nonlinear prob-
lems, once a “feasible solution” or “feasible subproblem” has been found.

1. A linesearch determines a step a over the range 0 < a < 3, where (is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on z if all the
constraints are linear. Normally, the first steplength tried is ay = min(1, g).

2. In some cases, such as f(z) = ae®® or f(x) = ax’, even a moderate change in the

components of z can lead to floating-point overflow. The parameter r is therefore
used to define a limit 8 = r(1 + [|z[|)/||p|| (where p is the search direction), and the
first evaluation of f(z) is at the potentially smaller steplength a; = min(1, 5, 3).

6. The SPECS file 39

3. Wherever possible, upper and lower bounds on z should be used to prevent evalua-
tion of nonlinear functions at meaningless points. The Major step limit provides
an additional safeguard. The default value r = 2.0 should not affect progress on well
behaved problems, but setting » = 0.1 or 0.01 may be helpful when rapidly vary-
ing functions are present. A “good” starting point may be required. An important
application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for may help locate
an optimum near the starting point.

Minimize Default
Maximize

This specifies the required direction of optimization. It applies to both linear and nonlinear
terms in the objective.

Minor iterations limit k Default = max{1000,5m}

This is the maximum number of minor iterations allowed for each QP subproblem in the
SQP algorithm. Current experience is that the major iterations converge more reliably if
the QP subproblems are allowed to solve accurately. Thus, k should be a large value.

In the major iteration log, a t at the end of a line indicates that the corresponding QP
was terminated by the limit k.

Note that ITterations limit defines an independent limit on the total number of minor
iterations (summed over all QP subproblems).

Minor feasibility tolerance t Default = 1.0e-6

SNOPT tries to ensure that all variables eventually satisfy their upper and lower bounds
to within the tolerance t. This includes slack variables. Hence, general linear constraints
should also be satisfied to within ¢.

Feasibility with respect to nonlinear constraints is judged by the Major feasibility
tolerance (not by t).

e If the bounds and linear constraints cannot be satisfied to within ¢, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is
quite small, it may be appropriate to raise ¢ by a factor of 10 or 100. Otherwise, some
error in the data should be suspected.

¢ Nonlinear functions will be evaluated only at points that satisfy the bounds and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem.

For example, if f(z) = (/1 + logxs, it is essential to place lower bounds on both
variables. If t = 1.0e-86, the bounds z; > 10~ and x5 > 10~* might be appropriate.
(The log singularity is more serious. In general, keep x as far away from singularities
as possible.)

e If Scale option > 1, feasibility is defined in terms of the scaled problem (since it is
then more likely to be meaningful).

o In reality, SNOPT uses t as a feasibility tolerance for satisfying the bounds on z and s
in each QP subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP
subproblem is declared infeasible. SNOPT is then in elastic mode thereafter (with only
the linearized nonlinear constraints defined to be elastic). See the Elastic options.

40 User’s Guide for SNOPT

Minor optimality tolerance t Default = 1.0e-6

This is used to judge optimality for each QP subproblem. Let the QP reduced gradients
be d;j = g; — 77 a;, where g; is the jth component of the QP gradient, a; is the associated
column of the QP constraint matrix, and 7 is the set of QP dual variables.

¢ By construction, the reduced gradients for basic variables are always zero. The QP
subproblem will be declared optimal if the reduced gradients for nonbasic variables at
their lower or upper bounds satisfy

djfllmll > =t or d;f||n|| <t
respectively, and if |d;|/||7|| <t for superbasic variables.

o In the above tests, ||7|| is a measure of the size of the dual variables. It is included
to make the tests independent of a large scale factor on the objective function. The
quantity actually used is defined by

|7|| = max{o/v/m,1}, where o = Z |7l
i=1

e If the objective is scaled down to be very small, the optimality test reduces to com-
paring d; against t.

Minor print level k Default = 0

This controls the amount of output to the PRINT and SUMMARY files during solution of
the QP subproblems. The value of k has the following effect:

0 No minor iteration output except error messages.

>1 A single line of output each minor iteration (controlled by Print frequency and
Summary frequency).

> 10 Basis factorization statistics generated during the periodic refactorization of the basis
(see Factorization frequency). Statistics for the first factorization each major
iteration are controlled by the Major print level.

New Basis file f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save
frequency.

The first line of the file will contain the word Proceeding if the run is still in progress.
At the end of a run a further basis map will be saved, with some other word indicating the
final solution status.

01d Basis file f Default = 0

If f > 0, the starting point will be obtained from this file in the format of Section 8.1.
The file will usually have been output previously as a New Basis file. It will not be
acceptable if the number of rows or columns in the problem has been altered.

6. The SPECS file 41

Optimality tolerance t Default = 1.0e-6
see Minor optimality tolerance

Partial price i Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

e When ¢ = 1, all columns of the constraint matrix (A — I) are searched.

e Otherwise, A and I are partitioned to give ¢ roughly equal segments A;, I; (j =1 to
i). If the previous pricing search was successful on A;, I;, the next search begins on
the segments A;1, Ijy1. (All subscripts here are modulo i.)

o If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments A; s, I o,
and so on.

e Partial price t (or ¢/2 or t/3) may be appropriate for time-stage models having ¢
time periods.

Pivot tolerance r Default = €2/3 ~ 3.7e-11

During solution of QP subproblems, the pivot tolerance is used to prevent columns entering
the basis if they would cause the basis to become almost singular.

e When z changes to z+ap for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding
element of p is called the pivot element.

e Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.

e It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the Minor Feasibility tolerance (say t) provides some freedom to
maximize the pivot element and thereby improve numerical stability. Excessively small
values of ¢ should therefore not be specified.

e To a lesser extent, the Expand frequency (say f) also provides some freedom to
maximize the pivot element. Excessively large values of f should therefore not be

specified.
Print file f Default = 15
Print frequency k Default = 1

If f > 0 and Minor print level > 0, a line of the QP iteration log will be printed on file
f every kth minor iteration.

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in
Section 8.2. For linear programs, this format is compatible with various commercial systems.

42 User’s Guide for SNOPT

Save frequency k Default = 100

If a NEW BASIS file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A BACKUP BASIS file will also be saved
if specified.

Scale option i Default = 2 (LP) or 1 (NLP)
Scale tolerance r Default = 0.9
Scale Print

Three scale options are available as follows:
1 Meaning

0 No scaling. This is recommended if it is known that z and the constraint matrix (and
Jacobian) never have very large elements (say, larger than 1000).

1 Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer [5]). This will
sometimes improve the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, an additional
scaling is performed that takes into account columns of (A — I') that are fixed or
have positive lower bounds or negative upper bounds.

If nonlinear constraints are present, the scales depend on the Jacobian at the first point
that satisfies the linear constraints. Scale option 2 should therefore be used only if
(a) a good starting point is provided, and (b) the problem is not highly nonlinear.

Scale tolerance affects how many passes might be needed through the constraint ma-
trix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coeflicients in each column:

pj = max|aij|/minlai[(ai; #0).

If max; p; is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number
of scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales (i) and column-scales ¢(j) to be printed. The scaled
matrix coefficients are @;; = a;;¢(j)/r (i), and the scaled bounds on the variables and slacks
are l; =1;/c(j), u; = uj/c(j), where c(j) = r(j —n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Solution file f Default = 0

The first four options determine whether the final solution obtained is to be output to the
PRINT file. The file option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

e For the first and third options, floating-point numbers are printed in £16.5 format,
and “infinite” bounds are denoted by the word None.

6. The SPECS file 43

e For the File option, all numbers are printed in 1p, e16.6 format, including “infinite”
bounds, which will have magnitude 1.000000e+20.

o To see more significant digits in the printed solution, it is sometimes useful to make
f refer to the PRINT file (i.e., make it the same as the number specified by Print
file).

Start Objective Check at Column k Default =1
Start Constraint Check at Column k Default = 1
Stop Objective Check at Column l Default = nj
Stop Constraint Check at Column l Default = n{

If Verify level > 0, these keywords may be used to abbreviate the verification of individual
gradient elements computed by subroutines funobj and funcon. For example:

e If the first 100 objective gradients appeared to be correct in an earlier run, and if
you have just found a bug in funobj that ought to fix up the 101-th component,
then you might as well specify Start Objective Check at Column 101. Similarly
for columns of the Jacobian.

o If the first 100 variables occur nonlinearly in the constraints, and the remaining vari-
ables are nonlinear only in the objective, then funobj must set the first 100 components
of g(*) to zero, but these hardly need to be verified. The above data card would again
be appropriate.

Summary file f Default = 6
Summary frequency k Default = 100

If f > 0 and Minor print level > 0, a line of the QP iteration log will be output to file
f every kth minor iteration.

Superbasics limit i Default = min{500,n; + 1}

This places a limit on the storage allocated for superbasic variables. Ideally, ¢ should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the “number
of independent variables”.

Normally, ¢ need not be greater than nj +1, where 74 is the number of nonlinear variables.
For many problems, i may be considerably smaller than n;. This will save storage if n; is
very large.

Suppress Parameters

Normally SNOPT prints the SPECS file as it is being read, and then prints a complete list of
the available options and their final values. The Suppress Parameters option tells SNOPT
not to print the full list.

44 User’s Guide for SNOPT

Total real workspace Maxrw Default = lenrw
Total integer workspace maxiw Default = leniw
Total character workspace maxcw Default = lencw
User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine SNOPT to certain parts of its workspace arrays cw,
iw, rw. (The arrays are defined by the last six parameters of snopt.)

The Total ... options place an upper limit on snopt’s workspace. They may be useful
on machines with virtual memory. For example, some systems allow a very large array
rw(lenrw) to be declared at compile time with no overhead in saving the resulting object
code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict SNOPT to the lower end of rw in order to reduce paging activity slightly.
(However, SNOPT accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If snopt’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the nonlinear
function routines will be free to use ru(mazrw + 1 : lenru) for their own purpose. Similarly
for the other work arrays.

The User ... options place a lower limit on snopt’s workspace (not counting the first
500 elements). Again, if snopt’s parameters ru, lenru happen to be the same as rw, lenrw,
the function routines will be free to use ru(501 : mazru) for their own purpose. Similarly
for the other work arrays.

Unbounded objective value fmax Default = 1.0e+15
Unbounded step size Qmax Default = 1.0e+18

These parameters are intended to detect unboundedness in nonlinear problems. (They may
not achieve that purpose!) During a line search, f is evaluated at points of the form z + ap,
where z and p are fixed and « varies. if |f| exceeds fmax Or @ exceeds amax, iterations are
terminated with the exit message Problem is unbounded (or badly scaled).

If singularities are present, unboundedness in f(z) may be manifested by a floating-point
overflow (during the evaluation of f(x + ap)), before the test against fimax can be made.

Unboundedness in z is best avoided by placing finite upper and lower bounds on the
variables.

Verify level l Default = 0

This option refers to finite-difference checks on the gradients computed by the user routines
funobj and funcon. Gradients are checked at the first point that satisfies all bounds and
linear constraints.

l Meaning

0 Only a “cheap” test will be performed, requiring 2 calls to funcon and 3 calls to
funobj.

1 Individual objective gradients will be checked (with a more reliable test). A key of the
form “OK” or “Bad?” indicates whether or not each component appears to be correct.

2 Individual columns of the Jacobian (constraint gradients) will be checked.

3 Options 2 and 1 will both occur (in that order).

6. The SPECS file 45

—1 No gradient checking will occur.

Verify level 3should be specified whenever a new function routine is being developed.
The Start and Stop keywords may be used to limit the number of nonlinear variables
checked. Missing gradients are not checked, so they result in no overhead.

Violation limit T Default = 10

This keyword defines an absolute limit on the magnitude of the maximum constraint viola-
tion after the line search. On completion of the line search, the new iterate xy41 satisfies
the condition

vi(zpy1) < Tmax{l,v;(z0)}, (6.3)

where z¢ is the point at which the nonlinear constraints are first evaluated and v;(z) is the
ith nonlinear constraint violation v;(z) = max(0,1; — F;(z), F;(x) — u;)-

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible
region whose size depends on the magnitude of 7. This makes it possible to keep the iterates
within a region where the objective is expected to be well-defined and bounded below. If the
objective is bounded below for all values of the variables, then 7 may be any large positive
value.

46 User’s Guide for SNOPT

7. Output

Subroutine snInit specifies unit numbers for the PRINT and SUMMARY files described in
this section. The files can be redirected with the Print file and Summary file options
(or suppressed).

7.1. The PRINT file

If Print file > 0, the following information is output to the PRINT file during the solution
process. All printed lines are less than 125 characters.

¢ A listing of the SPECS file, if any.

¢ A listing of the options that were or could have been set in the SPECS file.
e An estimate of the working storage needed and the amount available.

e Some statistics about the problem being solved.

e The storage available for the LU factors of the basis matrix.

e A summary of the scaling procedure, if Scale option > 0.

e Notes about the initial basis resulting from a CRASH procedure or a BASIS file.
e The major iteration log.

e The minor iteration log.

e Basis factorization statistics.

e The EXIT condition and some statistics about the solution obtained.

e The printed solution, if requested.

The last five items are described in the following sections.

7.2. The major iteration log

If Major print level > 0, one line of information is output to the PRINT file every kth
minor iteration, where k is the specified Print frequency (default k£ = 1).

Label Description
Maj The current major iteration number.
Mnr is the number of iterations required by both the feasibility and optimality phases

of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see §2).

Step The step length « taken along the current search direction p. The variables = have
just been changed to x 4+ ap. On reasonably well-behaved problems, the unit step
will be taken as the solution is approached.

n0bj The number of times subroutine funobj has been called to evaluate the nonlinear
objective function. Evaluations needed for the estimation of the gradients by
finite differences are not included. n0Obj is printed as a guide to the amount of
work required for the linesearch.

nCon The number of times subroutine funcon has been called to evaluate the nonlinear
constraint functions.

Merit is the value of the augmented Lagrangian merit function (see (2.2)). This function
will decrease at each iteration unless it was necessary to increase the penalty

7. Output 47

Feasbl

Optimal

nS

Penalty

LU

Swp

Cond Hz

parameters (see §2). As the solution is approached, Merit will converge to the
value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint
violations weighted by the elastic weight.

If the constraints are linear, this item is labeled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

is the value of rowerr, the maximum component of the scaled nonlinear constraint
residual (6.1). The solution is regarded as acceptably feasible if Feasbl is less than
the Major feasibility tolerance.

If the constraints are linear, all iterates are feasible and this entry is not printed.

is the value of maxgap, the maximum complementarity gap (6.2). It is an estimate
of the degree of nonoptimality of the reduced costs. Both Feasbl and Optimal
are small in the neighborhood of a solution.

The current number of superbasic variables.

is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if nnCon is zero).

The number of nonzeros representing the basis factors L and U on completion of
the QP subproblem.

If nonlinear constraints are present, the basis factorization B = LU is computed at
the start of the first minor iteration. At this stage, LU = lenL+ lenU, where lenL,
the number of subdiagonal elements in the columns of a lower triangular matrix
and lenU is the number of diagonal and superdiagonal elements in the rows of an
upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up or
down but in general will tend to increase. As the solution is approached and the
minor iterations decrease towards zero, LU will reflect the number of nonzeros in
the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorize
frequency, and LU will tend to increase between factorizations.

The number of columns of the basis matrix B that were swapped with columns of
S to improve the condition of B. The swaps are determined by an LU factorization
of the rectangular matrix Bs = (B S)7T with stability being favored more than
sparsity.

An estimate of the condition number of RTR, an estimate of ZTH Z, the reduced
Hessian of the Lagrangian. It is the square of the ratio of the largest and smallest
diagonals of the upper triangular matrix R (which is a lower bound on the con-
dition number of RTR). Cond Hz gives a rough indication of whether or not the
optimization procedure is having difficulty. If € is the relative precision of the ma-
chine being used, the SQP algorithm will make slow progress if Cond Hz becomes
as large as e~'/2 & 108, and will probably fail to find a better solution if Cond Hz
reaches e 3/ ~ 1012

To guard against high values of Cond Hz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

48 User’s Guide for SNOPT

PD is a two-letter indication of the status of the convergence tests involving primal
and dual feasibility of the iterates (see 6.1) and (6.2) in the description of Major
feasibility tolerance and Major optimality tolerance. Each letter is T if
the test is satisfied, and F otherwise.

If either of the indicators is F when snopt terminates with inform = 0, the user
should check the solution carefully.

The summary line may include additional code characters that indicate what happened
during the course of the iteration.

Code Meaning

c Central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if either
the linesearch gives a small step, or z is close to being optimal. In some cases,
it may be necessary to re-solve the QP subproblem with the central-difference
gradient and Jacobian.

d During the linesearch it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation limit.

1 The norm-wise change in the variables was limited by the value of the Major
step limit. If this output occurs repeatedly during later iterations, it may be
worthwhile increasing the value of Major step limit.

i If SNOPT is not in elastic mode, an “i” signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains
in effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem NP (7).

Wan

If SNOPT is already in elastic mode, an “i” indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M An extra evaluation of the problem functions was needed to define an acceptable
positive-definite quasi-Newton update to the Lagrangian Hessian. This modifica-
tion is only done when there are nonlinear constraints.

m This is the same as “M” except that it was also necessary to modify the update to
include an augmented Lagrangian term.

R The approximate Hessian has been reset by discarding all but the diagonal el-
ements. This reset will be forced periodically by the Hessian frequency and
Hessian updates keywords. However, it may also be necessary to reset an ill-
conditioned Hessian from time to time.

T The approximate Hessian was reset after ten consecutive major iterations in which
no BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s A self-scaled BFGS update was performed. This update is always used when the
Hessian approximation is diagonal, and hence always follows a Hessian reset.

S This is the same as a “s” except that it was necessary to modify the self-scaled

update to maintain positive definiteness.

n No positive-definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

7. Output 49

7.3.

the Hessian was reset to the identity matrix under control of the keyword Hessian
flush. This can happen only once in the course of the minimization.

The minor iterations were terminated at the Minor iteration limit.
The QP subproblem was unbounded.

A weak solution of the QP subproblem was found.

The minor iteration log

If Minor print level > 0, one line of information is output to the PRINT file every kth
minor iteration, where k is the specified Minor print frequency (default ¥ = 1). A heading
is printed before the first such line following a basis factorization. The heading contains the
items described below. In this description, a PRICE operation is defined to be the process
by which a nonbasic variable is selected to become superbasic (in addition to those already
in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes
basic immediately. Otherwise it remains superbasic, unless it reaches its opposite bound
and returns to the nonbasic set.

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments
of the constraint matrix (A —1T).

Label

Itn

pp

dj

+SBS
-SBS

-BS

Step

Pivot

Description
The current iteration number.

The Partial Price indicator. The variable selected by the last PRICE operation
came from the ppth partition of A and —I. pp is set to zero when the basis is
refactored.

This is the reduced cost (or reduced gradient) of the variable jq selected by PRICE
at the start of the present iteration. Algebraically, dj is d; = g; — 7" a; for j = jq,
where g; is the gradient of the current objective function, 7 is the vector of dual
variables for the QP subproblem, and a; is the jth column of (A —1T).

Note that dj is the 1-norm of the reduced-gradient vector at the start of the
iteration, just after the PRICE operation.

The variable jq selected by PRICE to be added to the superbasic set.

The variable chosen to leave the set of superbasics. It has become basic if the
entry under -B is nonzero; otherwise it has become nonbasic.

The variable removed from the basis (if any) to become nonbasic.

The variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest PRICE. The swap is done to ensure that there are no
superbasic slacks.

The step length a taken along the current search direction p. The variables = have
just been changed to x + ap. If a variable is made superbasic during the current
iteration (+SBS > 0), Step will be the step to the nearest bound. During Phase 2,
the step can be greater than one only if the reduced Hessian is not positive definite.

If column a, replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = a,. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.

50 User’s Guide for SNOPT

L The number of nonzeros representing the basis factor L. Immediately after a
basis factorization B = LU, this is lenL, the number of subdiagonal elements in
the columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U. Immediately after a basis factor-
ization, this is lenU, the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix. As columns of B are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate up or down;
in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for
U. This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to SNOPT should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L + U elements.

nInf The number of infeasibilities after the present iteration. This number will not
increase unless the iterations are in elastic mode.

Sinf,0bjective If nInf > 0, this is sInf, the sum of infeasibilities after the present it-
eration. It usually decreases at each nonzero Step, but if nInf decreases by 2 or
more, sInf may occasionally increase.

In elastic mode, the heading is changed to Composite 0bj, and the value printed
decreases monotonically.

If nInf = 0, the value printed is Objective, the QP objective function after the
present iteration.

The following items are printed if the problem is nonlinear or if the superbasic set is non-
empty (i.e., if the current solution is nonbasic).

Label Description

Norm rg The norm of the reduced-gradient vector at the start of the iteration. (It is the
norm of the vector with elements d; for variables j in the superbasic set.) During
Phase 2 this norm will be approximately zero after a unit step.

nS The current number of superbasic variables.

cond Hz See the major iteration log.

7.4. Basis factorization statistics

If Major print level > 10, the following items are output to the PRINT file whenever the
basis B or the rectangular matrix Bg = (B S)T is factorized before solution of the next
QP subproblem.

Note that Bgs may be factorized at the start of just some of the major iterations. It is
immediately followed by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or Bg, where
PLPT and PUQ are lower and upper triangular matrices for some permutation matrices P
and (). Stability is ensured as described under LU factor tolerance in §6.6.

IfMinor print level > 10, the same items are printed during the QP solution whenever
the current B is factorized.

Label Description

7. Output 51

Factorize

Demand

Iteration
Infeas

Objective

Nonlinear

Linear
Slacks
Elems

Density

Comprssns

Merit

lenL

lenU

Increase

Ut
d1

The number of factorizations since the start of the run.
A code giving the reason for the present factorization.

Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The nonzeros in the updated factors have increased significantly.
7 Not enough storage to update factors.

10 Row residuals too large (see the description of Check Frequency).

11 Tl-conditioning has caused inconsistent results.
The current iteration number.
The current number of infeasibilities.

If Infeas > 0, this is the current sum of infeasibilities.
If Infeas = 0, it is the current QP objective function.

The number of nonlinear variables in the current basis B (not printed if Bg is
factorized).

The number of linear variables in B (not printed if Bg is factorized).
The number of slack variables in B (not printed if Bg is factorized).
The number of nonzero matrix elements in B. (not printed if Bj is factorized).

The percentage nonzero density of B, 100 x Elems/(m?), where m is the number
of rows in the problem (m = Nonlinear + Linear + Slacks).

The number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to SNOPT
should be increased for efficiency.

The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (¢ — 1)(r — 1) where ¢ and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

The number of nonzeros in L. On most machines, each nonzero is represented
by one 8-byte real and two 4-byte integer data types.

The number of nonzeros in U. The storage required for each nonzero is the
same as for the nonzeros of L.

The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B; i.e., 100 x (1lenL + lenU — Elems)/Elems.

is m, the number of rows in the problem. Note that m = Ut + Lt + bp.
is the number of triangular rows of B at the top of U.

is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

52

User’s Guide for SNOPT

Lmax

Bmax

Umax

Umin

Growth

Lt

bp

d2

The maximum subdiagonal element in the columns of L. This will be no larger
than the LU factor tolerance.

The maximum nonzero element in B.

The maximum nonzero element in U, excluding elements of B that remain in
U unaltered. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without alteration. Elements in such rows will
not contribute to Umax. If the basis is strictly triangular, none of the elements
of B will contribute, and Umax will be zero.)

Ideally, Umax should not be substantially larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reduce the LU factor tolerance
to some value nearer 1.0.

Umax is not printed if Bg is factorized.
The smallest diagonal element of PU(Q in absolute magnitude.

The ratio Umax/Bmax, which should not be too large (see above).

As long as Lmax is not large (say 10.0 or less), max{Bmax, Unax} / Unin gives an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties might occur. (However,
an effort is made to avoid near-singularity by using slacks to replace columns
of B that would have made Umin extremely small. Messages are issued to this
effect, and the modified basis is refactored.)

is the number of triangular columns of B at the left of L.

is the size of the “bump” or block to be factorized nontrivially after the trian-
gular rows and columns of B have been removed.

is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6.

7.5. Crash statistics

If Major print level > 10, the following items are output to the PRINT file when Start =
’Cold’ and no basis file is loaded. They refer to the number of columns that the CRASH
procedure selects during several passes through A while searching for a triangular basis

matrix.
Label

Slacks

Free cols

Preferred

Unit
Double
Triangle

Pad

Description
is the number of slacks selected initially.

is the number of free columns in the basis, including those whose bounds are
rather far apart.

is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some
Jj < n). It will be a subset of the columns for which hs(j) = 3 was specified.

is the number of unit columns in the basis.
is the number of columns in the basis containing 2 nonzeros.
is the number of triangular columns in the basis with 3 or more nonzeros.

is the number of slacks used to pad the basis (to make it a nonsingular triangle).

7. Output 53

7.6. EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to summarize the
final result. Here we describe each message and suggest possible courses of action.
The number associated with each EXIT is the output value of the integer variable inform.

The following messages arise when a solution exists (though it may
not be optimal). A BASIS file may be saved, and the solution will
be output to the PRINT or SOLUTION files if requested.

0 EXIT -- optimal solution found
This is the message we all hope to see! It is certainly preferable to every other message,
and we naturally want to believe what it says, because this is surely one situation where
the computer knows best. There may be cause for celebration if the objective function has
reached an astonishingly new high (or low). Or perhaps it will signal the end of a strenuous
series of runs that have iterated far into the night, depleting one’s patience and computing
funds to an equally alarming degree. (We hope not!)

In all cases, a distinct level of caution is in order, even if it can wait until next morning.
For example, if the objective value is much better than expected, we may have obtained an
optimal solution to the wrong problem! Almost any item of data could have that effect if
it has the wrong value. Verifying that the problem has been defined correctly is one of the
more difficult tasks for a model builder. It is good practice in the function subroutines to
print any data that is input during the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one
local optimum? When the constraints are linear and the objective is known to be convex
(e.g., a sum of squares) then all will be well if we are minimizing the objective: a local
minimum is a global minimum in the sense that no other point has a lower function value.
(However, many points could have the same objective value, particularly if the objective is
largely linear.) Conversely, if we are mazimizing a convex function, a local maximum cannot
be expected to be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor
concave. Qur advice is always to specify a starting point that is as good an estimate
as possible, and to include reasonable upper and lower bounds on all variables, in order to
confine the solution to the specific region of interest. We expect modelers to know something
about their problem, and to make use of that knowledge as they themselves know best.

One other caution about “Optimal solution”s. Some of the variables or slacks may
lie outside their bounds more than desired, especially if scaling was requested. Max Primal
infeas refers to the largest bound infeasibility and which variable is involved. If it is
too large, consider restarting with a smaller Minor feasibility tolerance (say 10 times
smaller) and perhaps Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal
value. Broadly speaking, if

Max Dual infeas/Norm of pi = 10_d,

then the objective function would probably change in the dth significant digit if optimization
could be continued. If d seems too large, consider restarting with smaller Major and Minor
optimality tolerances.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlin-
ear rows. If it seems too large, consider restarting with a smaller Major feasibility
tolerance.

54 User’s Guide for SNOPT

1 EXIT -- the problem is infeasible
When the constraints are linear, this message can probably be trusted. Feasibility is mea-
sured with respect to the upper and lower bounds on the variables and slacks. Among all the
points satisfying the general constraints Az — s = 0, there is apparently no point that satis-
fies the bounds on z and s. Violations as small as the Minor feasibility tolerance are
ignored, but at least one component of z or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize cor-
rectly. Even if a feasible solution exists, the current linearization of the constraints may not
contain a feasible point. In an attempt to deal with this situation, when solving each QP
subproblem, SNOPT is prepared to relax the bounds on the slacks associated with nonlinear
rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier
estimates for the nonlinear constraints become large), SNOPT enters so-called “nonlinear
elastic” mode. The subproblem includes the original QP objective and the sum of the
infeasibilities—suitably weighted using the Elastic weight parameter. In elastic mode,
some of the bounds on the nonlinear rows “elastic”—i.e., they are allowed to violate their
specified bounds. Variables subject to elastic bounds are known as elastic variables. An
elastic variable is free to violate one or both of its original upper or lower bounds. If
the original problem has a feasible solution and the elastic weight is sufficiently large, a
feasible point eventually will be obtained for the perturbed constraints, and optimization
can continue on the subproblem. If the nonlinear problem has no feasible solution, SNOPT
will tend to determine a “good” infeasible point if the elastic weight is sufficiently large.
(If the elastic weight were infinite, SNOPT would locally minimize the nonlinear constraint
violations subject to the linear constraints and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear constraint violations,
there may still exist other regions in which the nonlinear constraints are satisfied. Wherever
possible, nonlinear constraints should be defined in such a way that feasible points are known
to exist when the constraints are linearized.

2 EXIT -- the problem is unbounded (or badly scaled)

EXIT -- violation limit exceeded -- the problem may be unbounded
For linear problems, unboundedness is detected by the simplex method when a nonbasic
variable can apparently be increased or decreased by an arbitrary amount without causing
a basic variable to violate a bound. A message prior to the EXIT message will give the
index of the nonbasic variable. Consider adding an upper or lower bound to the variable.
Also, examine the constraints that have nonzeros in the associated column, to see if they
have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

For nonlinear problems, SNOPT monitors both the size of the current objective function
and the size of the change in the variables at each step. If either of these is very large (as
judged by the Unbounded parameters—see §6.6), the problem is terminated and declared
UNBOUNDED. To avoid large function values, it may be necessary to impose bounds on some
of the variables in order to keep them away from singularities in the nonlinear functions.

The second message indicates an abnormal termination while enforcing the limit on the
constraint violations. This exit implies that the objective is not bounded below in the
feasible region defined by expanding the bounds by the value of the Violation limit.

3 EXIT -- major iteration limit exceeded
EXIT -- minor iteration limit exceeded
EXIT -- too many iterations

Either the Iterations limit or the Major iterations limit was exceeded before the

7. Output 55

required solution could be found. Check the iteration log to be sure that progress was being
made. If so, restart the run using a basis file that was saved (or should have been saved!)
at the end of the run.

4 EXIT -- requested accuracy could not be achieved
A feasible solution has been found, but the requested accuracy in the dual infeasibilities could
not be achieved. An abnormal termination has occurred, but SNOPT is within 102 of sat-
isfying the Major optimality tolerance. Check that the Major optimality tolerance
is not too small.

5 EXIT -- the superbasics limit is too small: nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and
superbasic variables have been optimized as much as possible and a PRICE operation is
necessary to continue, but there are already nnn superbasics (and no room for any more).
In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the
storage needed for the reduced Hessian (about %82 double words).

6 EXIT -- constraint and objective values could not be calculated
This exit occurs if a value mode < —1 is set during some call to funobj or funcon. SNOPT
assumes that you want the problem to be abandoned forthwith.
In some environments, this exit means that your subroutines were not successfully linked
to SNOPT. If the default versions of funobj and funcon are ever called, they issue a warning
message and then set mode to terminate the run.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients

A check has been made on some individual elements of the objective gradient array at the
first point that satisfies the linear constraints. At least one component gObj (j) is being
set to a value that disagrees markedly with a forward-difference estimate of 0f/0z;. (The
relative difference between the computed and estimated values is 1.0 or more.) This exit is a
safeguard, since SNOPT will usually fail to make progress when the computed gradients are
seriously inaccurate. In the process it may expend considerable effort before terminating
with EXIT 9 below.

Check the function and gradient computation very carefully in funobj. A simple omis-
sion (such as forgetting to divide £0bj by 2) could explain everything. If £0bj or gObj (j)
is very large, then give serious thought to scaling the function or the nonlinear variables.

If you feel certain that the computed gObj () is correct (and that the forward-difference
estimate is therefore wrong), you can specify Verify level 0 to prevent individual elements
from being checked. However, the optimization procedure may have difficulty.

8 EXIT -- subroutine funcon seems to be giving incorrect gradients
This is analogous to the preceding exit. At least one of the computed Jacobian elements
is significantly different from an estimate obtained by forward-differencing the constraint
vector F'(x). Follow the advice given above, trying to ensure that the arrays fCon and gCon
are being set correctly in funcon.

9 EXIT -- the current point cannot be improved upon
Several circumstances could lead to this exit.

1. Subroutines funobj or funcon could be returning accurate function values but inac-
curate gradients (or vice versa). This is the most likely cause. Study the comments
given for EXIT 7 and 8, and do your best to ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too
low. For example, accidental use of a real data type when double precision was
intended would lead to a relative function precision of about 10~% instead of something

56 User’s Guide for SNOPT

like 107'°. The default Optimality tolerance of 10~% would need to be raised to
about 1072 for optimality to be declared (at a rather suboptimal point). Of course,
it is better to revise the function coding to obtain as much precision as economically
possible.

3. If function values are obtained from an expensive iterative process, they may be ac-
curate to rather few significant figures, and gradients will probably not be available.
One should specify

Function precision t
Major optimality tolerance Vit

but even then, if ¢ is as large as 1075 or 10~% (only 5 or 6 significant figures), the same
exit condition may occur. At present the only remedy is to increase the accuracy of
the function calculation.

10 EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic
variables zz, given the present values of the superbasic and nonbasic variables. A step of
“iterative refinement” has also been applied to increase the accuracy of zz. However, a
row check has revealed that the resulting solution does not satisfy the current constraints
Az — s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale option
1 if scaling has not yet been used and there are some linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a sys-
tematic growth may occur in the factor U. Consult the description of Umax, Umin and
Growth in §7.4, and set the LU factor tolerance to 2.0 (or possibly even smaller, but not
less than 1.0).

12 EXIT -- terminated from subroutine slUser
The user has set the value iAbort = 1 in subroutine s1User. SNOPT assumes that you
want the problem to be abandoned forthwith.

If the following exits occur during the first basis factorization, the
primal and dual variables x and pi will have their original input
values. BASIS files will be saved if requested, but certain values in
the printed solution will not be meaningful.

20 EXIT -- not enough integer/real storage for the basis factors
The main integer or real storage array iw(*) or rw(*) is apparently not large enough for this
problem. The routine declaring iw and rw should be recompiled with a larger dimensions
for those arrays. The new values should also be assigned to leniw and lenrw.

An estimate of the additional storage required is given in messages preceding the exit.

21 EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the
current basis has more than one element in row 7 and column j. This could be caused by a
corresponding error in the input parameters a(*), ha(*), and ka(*).

22 EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the
basis to be structurally or numerically singular. (Some diagonals of the triangular matrix
U were respectively zero or smaller than a certain tolerance.) The associated variables are

7. Output 57

replaced by slacks and the modified basis is refactorized, but singularity persists. This must
mean that the problem is badly scaled, or the LU factor tolerance is too much larger
than 1.0.

If the following messages arise, either an OLD BASIS file could not
be loaded properly, or some fatal system error has occurred. New
BASIS files cannot be saved, and there is no solution to print. The
problem is abandoned.

30 EXIT -- the basis file dimensions do not match this problem
On the first line of the OLD BAGSIS file, the dimensions labeled m and n are different from
those associated with the problem that has just been defined. You have probably loaded a
file that belongs to another problem.

Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have
to alter m and n and the map beginning on the third line (a hazardous operation). It may
be easier to restart with a PUNCH or DUMP file from an earlier version of the problem.

31 EXIT -- the basis file state vector does not match this problem

For some reason, the OLD BASIS file is incompatible with the present problem, or is not
consistent within itself. The number of basic entries in the state vector (i.e., the number of
3’s in the map) is not the same as m on the first line, or some of the 2’s in the map did not
have a corresponding “j z;” entry following the map.

32 EXIT -- system error. Wrong no. of basic variables: nnn

This exit should never happen. It may indicate that the wrong SNOPT source files have

been compiled, or incorrect parameters have been used in the call to subroutine snopt.
Check that all integer variables and arrays are declared integer in your calling program

(including those beginning with h!), and that all “real” variables and arrays are declared

consistently. (They should be double precision on most machines.)

The following messages arise if additional storage is needed to allow
optimization to begin. The problem is abandoned.

42 EXIT -- not enough 8-character storage to start solving the problem
The main character storage array cw(*) is not large enough.

43 EXIT -- not enough integer storage to start solving the problem
The main integer storage array iw(*) is not large enough to provide workspace for the
optimization procedure. See the advice given for Exit 20.

44 EXIT -- not enough real storage to start solving the problem

The main storage array rw(*) is not large enough to provide workspace for the optimization
procedure. Be sure that the Superbasics limit is not unreasonably large. Otherwise, see
the advice for EXIT 20.

7.7. Solution output

At the end of a run, the final solution is output to the PRINT file in accordance with the
Solution keyword. Some header information appears first to identify the problem and the
final state of the optimization procedure. A ROWS section and a COLUMNS section then
follow, giving one line of information for each row and column. The format used is similar
to certain commercial systems, though there is no industry standard.

58 User’s Guide for SNOPT

An example of the printed solution is given in §7. In general, numerical values are
output with format £16.5. The maximum record length is 111 characters, including the
first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The
values £1 are also printed specially as 1.0 and — 1.0. Infinite bounds (+£10%° or larger) are
printed as None.

Note: If two problems are the same except that one minimizes an objective f(z) and the
other maximizes — f(x), their solutions will be the same but the signs of the dual variables
m; and the reduced gradients d; will be reversed.

The ROWS section

General linear constraints take the form [< Az < w. The ith constraint is therefore of the
form
a<a'z <B,

and the value of a’x is called the row activity. Internally, the linear constraints take the
form Az — s = 0, where the slack variables s should satisfy the bounds | < s < u. For the
ith “row”, it is the slack variable s; that is directly available, and it is sometimes convenient
to refer to its state. Slacks may be basic or nonbasic (but not superbasic).

Nonlinear constraints o < Fj(z) + a’z < 3 are treated similarly, except that the row
activity and degree of infeasibility are computed directly from Fj(x)+ a’z rather than from
S;.

Label Description

Number The value n + ¢. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ¢th row.

State The state of the ith row relative to the bounds a and 3. The various states possible
are as follows.

LL The row is at its lower limit, a.

UL The row is at its upper limit, 3.

EQ The limits are the same (a = f).

BS The constraint is not binding. s; is basic.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
from its current value, there would be no change in the objective function. The
values of the basic and superbasic variables might change, giving a genuine
alternative solution. The values of the dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The slack is basic and is currently violating one of its bounds by
more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger
than the Optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the
scaled problem, since the keys are then more likely to be meaningful.

7. Output 59

Activity The row value a’z (or Fj(z) + a’z for nonlinear rows).

Slack activity The amount by which the row differs from its nearest bound. (For free
rows, it is taken to be minus the Activity.)

Lower limit «, the lower bound on the row.
Upper limit @3, the upper bound on the row.

Dual activity The value of the dual variable 7;, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector m always satisfies BTnr = gg,
where B is the current basis matrix and gp contains the associated gradients for
the current objective function.

I The constraint number, 1.

The COLUMNS section

Here we talk about the “column variables” x;, j = 1: n. We assume that a typical variable
has bounds a < z; < 3.

Label Description

Number The column number, j. This is the internal number used to refer to z; in the
iteration log.

Column The name of z;.

State The state of z; relative to the bounds o and 3. The various states possible are as
follows.

LL 1z, is nonbasic at its lower limit, a.

UL z; is nonbasic at its upper limit, 3.

EQ z; is nonbasic and fixed at the value oo = 3.

FR z; is nonbasic at some value strictly between its bounds: a < z; < §.
BS z; is basic. Usually o < z; < §.

SBS z; is superbasic. Usually a < z; < .

A key is sometimes printed before the State to give some additional information
about the state of z;.

A Alternative optimum possible. The variable is nonbasic, but its reduced gradi-
ent is essentially zero. This means that if z; were allowed to start moving from
its current value, there would be no change in the objective function. The
values of the basic and superbasic variables might change, giving a genuine
alternative solution. The values of the dual variables might also change.

D Degenerate. x; is basic, but it is equal to (or very close to) one of its bounds.

Infeasible. x; is basic and is currently violating one of its bounds by more than
the Feasibility tolerance.

N Not precisely optimal. x; is nonbasic. Its reduced gradient is larger than the
Optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the
scaled problem, since the keys are then more likely to be meaningful.

Activity The value of the variable z;.

60 User’s Guide for SNOPT

Obj Gradient gj, the jth component of the gradient of the (linear or nonlinear) objective
function. (If any x; is infeasible, g; is the gradient of the sum of infeasibilities.)

Lower limit «, the lower bound on z;.
Upper limit [, the upper bound on z;.

Reduced gradnt The reduced gradient d; = g; — 7’ a;, where a; is the jth column of the
constraint matrix (or the jth column of the Jacobian at the start of the final major
iteration).

M+J The value m + j.

7.8. The SOLUTION file

The information in a printed solution (§7.7) may be output as a SOLUTION file, according
to the Solution file option (which may refer to the PRINT file if so desired). Infinite
bounds appear as +10%° rather than None. Other numerical values are output with format
1p, e16.6.

A SOLUTION file is intended to be read from disk by a self-contained program that
extracts and saves certain values as required for possible further computation. Typically
the first 14 records would be ignored. Each subsequent record may be read using

format (i8, 2x, 2a4, 1x, al, 1x, a3, 5el6.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that
starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
COLUMNS section can then be read under the same format. (There should be no need for
backspace statements.)

7.9. The SUMMARY file

If Summary file > 0, the following information is output to the SUMMARY file. (It is a
brief form of the PRINT file.) All output lines are less than 72 characters.

e The Begin line from the SPECS file, if any.

e The basis file loaded, if any.
A brief Major iteration log.

e A brief Minor iteration log.
e The EXIT condition and a summary of the final solution.

The following SUMMARY file is from the example of §3, using Major print level 1 and
Minor print level O.

7. Output

61

SNOPT 5.3 (0ct 97)

Begin Toy NLP problem

Scale option 1, Partial price 1

Linear constraints satisfied after
funcon sets 4 out of 4
funobj sets 3 out of 3
Major Minor Step nCon Merit
0 3 0.0E+00 1 1.700000E+01
1 0 1.0E+00 2 1.400000E+01

EXIT -- optimal solution found

Problem name Toy NLP

No. of iterations 3
No. of major iterations 1
Penalty parameter 6.010E+00
No. of calls to funobj 4
No. of degenerate steps 0
Norm of x (scaled) 5.0E+00
Norm of x 9.2E+00
Max Prim inf(scaled) 0 0.0E+00
Max Primal infeas 0 0.0E+00
Nonlinear constraint violn 0.0E+00

Solution printed on file 9

Time for MPS input

Time for solving problem
Time for solution output

Time for constraint functions
Time for objective function

snopt finished.

inform = 0
nlnf = 0
= 0.0000000000000000E+00

sInf

obj 4.000000000000000

0 minor itms. 0 superbasics.

constraint gradients.
objective gradients.

Feasibl Optimal nS Penalty PD
1.7E-01 1.7E+00 0 0.0E+00 FF R
0.0E+00 0.0E+00 0 6.0E+00 TT s

Objective value 1.4000000000E+01
Linear objective 1.0000000000E+01
Nonlinear objective 4.0000000000E+00

No. of calls to funcon 3
Percentage 0.00
Norm of pi (scaled) 9.0E+00
Norm of pi 7.0E+00
Max Dual inf(scaled) 0 0.0E+00
Max Dual infeas 0 0.0E+00

0.00 seconds
0.00 seconds
0.00 seconds
0.00 seconds
0.00 seconds

62 User’s Guide for SNOPT

8. BASIS files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order
to restart the run if necessary, or to provide a good starting point for some closely related
problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS
lines of the following form:

New Basis file 10
Backup file 11
Punch file 20
Dump file 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP BASIS files are saved in that order every kth iteration, where
k is the Save frequency.
NEW BASIS, PUNCH and DUMP files are saved at the end of a run, in that order. They
may be re-loaded at the start of a subsequent run by specifying SPECS lines of the following
form:

01d Basis file 10
Insert file 20
Load file 30

Only one such file will actually be loaded. If more than one positive file number is specified,
the order of precedence is as shown. If no BASIS files are specified, one of the Crash options
takes effect.

Figures 1-3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for PUNCH and
DUMP files.) The files shown correspond to the optimal solution for the economic-growth
model MANNE. (The problem has 10 nonlinear constraints, 10 linear constraints, and 30
variables.) Selected column numbers are included to define significant data fields.

8.1. NEW and OLD BASIS files

We sometimes call these files basis maps. They contain the most compact representation
of the state of each variable. They are intended for restarting the solution of a problem at
a point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used.)

As illustrated in Figure 1, the following information is recorded in a NEW BAGSIS file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (Optimal Soln, Infeasible, Unbounded, Excess Itns,
Error Condn, or Proceeding), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the 0BJECTIVE, RHS, RANGES and BOUNDS names, M = m, the number
of rows in the constraint matrix, N = n, the number of columns in the constraint
matrix, and SB = the number of superbasic variables.

3. A set of (n4+m —1)/80+1 lines indicating the state of the n column variables and the
m slack variables in that order. One character hs (j) is recorded for each j =1 : n+m
as follows, written with format (80i1).

8. BASIS files 63

hs(j) State of the jth variable

0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic

3 Basic

If variable j is nonbasic, it may be fized (lower bound = upper bound), or free (infinite
bounds), or it may be strictly between its bounds. In such cases, hs(j) = 0. (Free
variables will almost always be basic.)

. A set of lines of the form

J Tj

written with format (i8, 1p, e24.14) and terminated by an entry with j = 0, where
J denotes the jth variable and z; is a real value. The jth variable is either the jth
column or the (j — n)th slack, if j > n. Typically, hs(j) = 2 (superbasic). When
nonlinear constraints are present, this list of superbasic variables is extended to include
all basic nonlinear variables. The Jacobian matrix can then be reconstructed exactly
for a restart. The list also includes nonbasic variables that lie strictly between their
bounds.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS file may be input at the beginning of a later
run as a NEW BASIS file. The following notes are relevant:

1.
2.

The first line is input and printed but otherwise not used.

The values labeled M and N on the second line must agree with m and n for the problem
that has just been defined. The value labeled SB is input and printed but is not used.

. The next set of lines must contain exactly m values hs(j) = 3, denoting the basic

variables.

. The list of j and z; values must include an entry for every variable whose state is

hs(j) = 2 (the superbasic variables).

. Further j and z; values may be included, in any order.

. For any j in this list, if hs(j) = 3 (basic), the value z; will be recorded for nonlinear

variables, but the variable will remain basic.

. If hs(j) # 3, variable j will be initialized at the value z; and its state will be reset

to 2 (superbasic). If the number of superbasic variables has already reached the
Superbasics limit, then variable j will be made nonbasic at its current value (even
if it is not equal to one of its bounds).

sqdat2.. ITN 0 Optimal Soln NINF 0 0BJ -2.043665038075E+06
0BJ= RHS= RNG= BND= M= 8 N= 7 SB= 1
033023303133003

5 4.33461578293999E+02
0

Figure 1: Format of NEW and OLD BASIS files

64 User’s Guide for SNOPT

8.2. PUNCH and INSERT files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain
a useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 2. Apart from the first and last line, each
entry has the following form:

Columns 2-3 5-12 1522 25-36
Contents Key Namel Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed
that the basis is initially set to be the full set of slack variables, and that column variables
are initially at their smallest bound in absolute magnitude, or zero for free variables.

Key Action to be taken during INSERT

XL Make variable Namel basic and slack Name2 nonbasic at its lower bound.
XU Make variable Namel basic and slack Name2 nonbasic at its upper bound.
LL Make variable Namel nonbasic at its lower bound.

UL Make variable Namel nonbasic at its upper bound.

SB Make variable Namel superbasic at the specified Value.

Note that Namel may be a column name or a row name, but on XL and XU lines, Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
if Namel is a nonlinear variable then its Value is recorded for possible use in defining the
initial Jacobian matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH data

1. Variables are output in natural order. For example, on the first XL or XU line, Namel
will be the first basic column and Naeme2 will be the first row whose slack is not basic.

2. LL lines are not output for nonbasic variables if the corresponding lower bound value
is zero.

Notes on INSERT data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.

2. Preferably an INSERT file should be an unmodified PUNCH file from an earlier run
on the same problem. If some rows have been added to the problem, the INSERT file
need not be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Namel is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Namel if the Superbasics limit has been
reached. However, the associated Value will be retained.

8. BASIS files 65

8.3. DUMP and LOAD files

These files are similar to PUNCH and INSERT files, but they record solution information in
a manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last line, each entry has the form

Columns 2-3 5-12 25-36
Contents Key Name Value

as illustrated in Figure 3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,
Basic and Superbasic respectively.

Notes on DUMP data

1. A line is output for every variable, columns followed by slacks.

2. Nonbasic variables between their bounds will be output with key LL and their current
value.

Notes on LOAD data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. BS causes Name to become basic.
. SB causes Name to become superbasic at the specified Value.

. LL or UL cause Name to be nonbasic at the specified Value.

Tt s W

. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

6. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will be retained if Name is a Jacobian variable.

7. (Partial basis) Let m be the number of rows in the problem. If fewer than m variables
are specified to be basic, a tentative basis list will be constructed by adding the
requisite number of slacks, starting from the first row and taking those that were not
previously specified to be basic or superbasic. (If the resulting basis proves to be
singular, the basis factorization routine will replace a number of basic variables by
other slacks.)

8. (Too many basics) If m variables have already been specified as basic, any further BS
keys will be treated as though they were SB. This feature may be useful for combining
solutions to smaller problems.

66 User’s Guide for SNOPT

NAME sqdat2.. DUMP/LOAD

LL ...100 0.00000E+00

BS ...101 3.89064E+02

BS ...102 6.19233E+02

LL ...103 1.00000E+02

SB ...104 4.33462E+02

BS ...105 3.00048E+02

BS ...106 1.58194E+02

LL ...107 2.00000E+03

NAME sqdat2.. PUNCH/INSERT BS ...108 4.83627E+01

XL ...10001 3.89064E+02 UL ...109 1.00000E+02

XU ...10102 6.19233E+02 BS ...110 3.24241E+01

LL ...10203 1.00000E+02 BS ...111 1.60065E+01

SB ...10504 4.33462E+02 LL ...112 1.50000E+03

XL ...10705 3.00048E+02 LL ...113 2.50000E+02

XL ...11106 1.58194E+02 BS ...114 -2.90022E+06
ENDATA ENDATA

Figure 2: Format of PUNCH/INSERT files Figure 3: Format of DUMP /LOAD files

References 67

References

(1]

(11]
(12]

(13]

A. R. ConN, Constrained optimization using a nondifferentiable penalty function, SIAM J. Numer.
Anal., 10 (1973), pp. 760-779.

G. B. DANTZIG, Linear Programming and FEztensions, Princeton University Press, Princeton, New
Jersey, 1963.

S. K. ELDERSVELD, Large-scale sequential quadratic programming algorithms, PhD thesis, Department
of Operations Research, Stanford University, Stanford, CA, 1991.

R. FLETCHER, An {1 penalty method for nonlinear constraints, in Numerical Optimization 1984, P. T.
Boggs, R. H. Byrd, and R. B. Schnabel, eds., Philadelphia, 1985, STAM, pp. 26—40.

R. FOURER, Solving staircase linear programs by the simplex method. 1: Inversion, Math. Prog., 23
(1982), pp. 274-313.

P. E. GiLL, W. MURRAY, AND M. A. SAUNDERS, SNOPT: An SQP algorithm for large-scale constrained
optimization, Numerical Analysis Report 97-2, Department of Mathematics, University of California,
San Diego, La Jolla, CA, 1997.

P. E. GiLL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, User’s guide for NPSOL (Version
4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Department of Operations
Research, Stanford University, Stanford, CA, 1986.

, Maintaining LU factors of a general sparse matriz, Linear Algebra and its Applications, 88/89
(1987), pp. 239-270.

, A practical anti-cycling procedure for linearly constrained optimization, Math. Prog., 45 (1989),
pp- 437-474.

, Some theoretical properties of an augmented Lagrangian merit function, in Advances in Opti-
mization and Parallel Computing, P. M. Pardalos, ed., North Holland, North Holland, 1992, pp. 101~
128.

B. A. MURTAGH AND M. A. SAUNDERS, Large-scale linearly constrained optimization, Math. Prog., 14
(1978), pp. 41-72.

, A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints,
Math. Prog. Study, 16 (1982), pp. 84-117.

, MINOS 5.4 User’s Guide, Report SOL 83-20R, Department of Operations Research, Stanford
University, Stanford, CA, Revised 1995.

Acknowledgement

We are grateful to Alan Brown of the Numerical Algorithms Group Ltd for helpful comments
on the documentation for SNOPT. We also thank Rocky Nelson, Arne Drud and Ulf Ringertz
for their feedback while running SNOPT on numerous examples.

